Citation: YAN Zi-jin, JI Yong-gang, SONG Hua, ZHANG Yong-jun, DAI Yue-li. Effects of sugars on the structure of SAPO-34 and its MTO performance[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(6): 737-744. shu

Effects of sugars on the structure of SAPO-34 and its MTO performance

  • Corresponding author: SONG Hua, 
  • Received Date: 9 January 2019
    Revised Date: 27 March 2019

    Fund Project: The project was supported by Innovative Scientific Research Projects of Innovative Practice Base for Postgraduate Training in Northeast Petroleum University(YJSCX2017-016NEPU)Innovative Scientific Research Projects of Innovative Practice Base for Postgraduate Training in Northeast Petroleum University YJSCX2017-016NEPU

Figures(8)

  • Hierarchical SAPO-34 zeolites were successfully synthesized using cheap xylose, sucrose, starch and glucomannan as hard template and characterized by means of XRD, BET, SEM, TEM, ICP and NH3-TPD. The effects of sugar hard template on the structure and MTO properties of as-prepared SAPO-34 zeolites were studied on a fixed bed. The results showed that introduction of carbohydrate hard template could increase the specific surface area, microporous and mesoporous volume of SAPO-34 zeolites. The olefin selectivity and lifetime of SAPO-34 were both higher than those of ordinary SAPO-34. The SAPO-34-z with the largest mesoporous volume, the least acidity amounts and the weakest acidity showed the longest lifetime (130 min), which was 30% longer than that of ordinary SAPO-34 (100 min). The lifetime of zeolites decreased in the order of SAPO-34-z > SAPO-34-h > SAPO-34-d > SAPO-34-m > SAPO-34 > SAPO-34-p. The olefin selectivity of hierarchical SAPO-34 zeolites is higher than that of conventional SAPO-34 zeolites.
  • 加载中
    1. [1]

      SUN C, WANG Y Q, WANG Z, CHEN H B, WANG X, LI H Y, SUN L Y, FAN C Y, WANG C, ZHANG X. Fabrication of hierarchical ZnSAPO-34 by alkali treatment with improved catalytic performance in the methanol-to-olefin reaction[J]. C R Chim, 2018,21(1):61-70. doi: 10.1016/j.crci.2017.11.006

    2. [2]

      ANDREW H, THUY T L, SHI Z N, DAI H, JEFFREY D R, ADITYA B. Effects of diffusional constraints on lifetime and selectivity in methanol-to-olefins catalysis on HSAPO-34[J]. J Catal, 2019,369:122-132. doi: 10.1016/j.jcat.2018.10.031

    3. [3]

      REN S, LIU G J, WU X, CHEN X Q, WU M H, ZENG G F, LIU Z Y, SUN Y H. Enhanced MTO performance over acid treated hierarchical SAPO-34[J]. Chin J Catal, 2017,38(1):123-130. doi: 10.1016/S1872-2067(16)62557-3

    4. [4]

      WANG J, YANG M F, SHANG W J, SU X P, HAO Q Q, CHEN H Y, MA X X. Synthesis, characterization, and catalytic application of hierarchical SAPO-34 zeolite with three-dimensionally ordered mesoporous-imprinted structure[J]. Microporous Mesoporous Mater, 2017,252(1):10-16.  

    5. [5]

      YANG B, ZHAO P B, MA J H, LI R F. Synthesis of hierarchical SAPO-34 nanocrystals with improved catalytic performance for methanol to olefins[J]. Chem Phys Lett, 2016,665:59-61. doi: 10.1016/j.cplett.2016.10.052

    6. [6]

      ALI Z V, JAFAR T, SAEED S. Carbon nanotube templated synthesis of metal containing hierarchical SAPO-34 catalysts:Impact of the preparation method and metal avidities in the MTO reaction[J]. Microporous Mesoporous Mater, 2016,236:1-12. doi: 10.1016/j.micromeso.2016.08.027

    7. [7]

      FENG R, WANG X X, LIN J W, LI Z, HOU K, YAN X L, HU X Y, YAN Z F, MARK J, ROOD S. Two-stage glucose-assisted crystallization of ZSM-5 to improve methanol to propylene (MTP)[J]. Microporous Mesoporous Mater, 2018,270:57-66. doi: 10.1016/j.micromeso.2018.05.003

    8. [8]

      ZHANG C, LU X C, WANG T Z. Synthesis of SAPO-34 using metakaolin in the presence of β-cyclodextrin[J]. J Energy Chem, 2015,24(4):401-406. doi: 10.1016/j.jechem.2015.06.008

    9. [9]

      VENNA S R, CARREON M A. Synthesis of SAPO-34 crystals in the presence of crystal growth inhibitors[J]. J Phys Chem B, 2008,112(51):16261-16265. doi: 10.1021/jp809316s

    10. [10]

      LIU X F, DU S Y, ZHANG B Q. Seeded growth of dense and thin SAPO-34 membranes on porous α-Al2O3 substrates under microwave irradiation[J]. Mater Lett, 2013,91:195-197. doi: 10.1016/j.matlet.2012.09.076

    11. [11]

      ZHANG Qiang, MA Xiao-yue, LIU Lu. Effect of seed form on the structure and properties of as-synthesized SAPO-34 molecular sieves and their catalytic performance in the conversion of methanol to olefins[J]. J Fuel Chem Technol, 2018,46(10):1225-1230. doi: 10.3969/j.issn.0253-2409.2018.10.010 

    12. [12]

      LEE Y J, BAEK S C, JUN K L. Methanol conversion on SAPO-34 catalysts prepared by mixed template method[J]. Appl Catal A:Gen, 2009,329:130-136.

    13. [13]

      HUSSEIN B, JAFAR T D, MEHDI S. Simultaneous effects of water, TEAOH and morpholine on SAPO-34 synthesis and its performance in MTO process[J]. Microporous Mesoporous Mater, 2018,261:111-118. doi: 10.1016/j.micromeso.2017.11.011

    14. [14]

      IZADBAKHSH A, FARHADI F, KHORASHEH F, SAHEBDELFAR S, ASADI M, YAN Z F. Effect of SAPO-34's composition on its physicochemical properties and deactivation in MTO process[J]. Appl Catal A:Gen, 2009,364(1/2):48-56.  

    15. [15]

      AGHAMOHAMMADI S, HAGHIGHI M. Dual-template synthesis of nanostructured CoAPSO-34 used inmethanol to olefins:Effect of template combinations on catalytic performance and coke formation[J]. Chem Eng J, 2015,264:359-375. doi: 10.1016/j.cej.2014.11.102

    16. [16]

      MARCHESE L, CHEN J, WRIGHT P A, THAMOS J M. Formation of hydronium at the broensted site in SAPO-34 catalysts[J]. J Chem Phys, 1993,97(31):8109-8112. doi: 10.1021/j100133a001

    17. [17]

      WANG W, SEILER M, HUNGER M. Role of surfacemethoxy species in the conversion of methanol todimethyl ether on acidic zeolites investigated by in situstopped-flow MAS NMR spectroscopy[J]. J Phys Chem B, 2001,105:12553-12558. doi: 10.1021/jp0129784

    18. [18]

      SONG W, HAW J F, NICHOLAS J B, HENEGHAN C S. Methylbenzenes are the organic reaction centers for methanol-to-olefin catalysis on H-SAPO-34[J]. J Am Chem Soc, 2000,122(43):10726-10727. doi: 10.1021/ja002195g

    19. [19]

      TAN J, LIU Z M, BAO X H, LIU X C, HAN X W, HE C Q, ZHAI R S. Crystallization and Si Incorporation mechanisms of SAPO-34[J]. Microporous Mesoporous Mater, 2002,53(1/3):97-108.  

  • 加载中
    1. [1]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    2. [2]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    3. [3]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    4. [4]

      Linhui LiuWuwan XiongMingli FuJunliang WuZhenguo LiDaiqi YePeirong Chen . Efficient NOx abatement by passive adsorption over a Pd-SAPO-34 catalyst prepared by solid-state ion exchange. Chinese Chemical Letters, 2024, 35(4): 108870-. doi: 10.1016/j.cclet.2023.108870

    5. [5]

      Hongling Yuan Jialin Xie Jiawei Wang Jixiang Zhao Jiayan Liu Qing Feng Wei Qi Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041

    6. [6]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    7. [7]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    8. [8]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    9. [9]

      Wanmin Cheng Juan Du Peiwen Liu Yiyun Jiang Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066

    10. [10]

      Xunzhang Fan Yuanjin Zhao Shufang Luo Aihua He . Karl Ziegler: A Pioneer in the Polyolefin Industry – Commemorating the 50th Anniversary of the German Chemist’s Passing. University Chemistry, 2024, 39(8): 389-394. doi: 10.3866/PKU.DXHX202312065

    11. [11]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    12. [12]

      Lilong Gao Yuhao Zhai Dongdong Zhang Linjun Huang Kunyan Sui . Exploration of Thiol-Ene Click Polymerization in Polymer Chemistry Experiment Teaching. University Chemistry, 2025, 40(4): 87-93. doi: 10.12461/PKU.DXHX202405143

    13. [13]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    14. [14]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    15. [15]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    16. [16]

      Jian Jin Jing Cheng Xueping Yang . Integration Practice of Organic Chemistry Experiment and Safety Education: Taking the Synthesis of Triphenylmethanol as an Example. University Chemistry, 2024, 39(3): 345-350. doi: 10.3866/PKU.DXHX202309010

    17. [17]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    18. [18]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    19. [19]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    20. [20]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

Metrics
  • PDF Downloads(4)
  • Abstract views(1438)
  • HTML views(178)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return