Mechanism of CaSO4 poisoning commercial V2O5-WO3/TiO2 catalyst for flue gas selective catalytic reduction of NOx with NH3
- Corresponding author: ZHANG Ya-ping, amflora@seu.edu.cn
Citation:
WANG Jun-jie, ZHANG Ya-ping, WANG Wen-xuan, XIAO Rui, LI Juan, GUO Wan-qiu. Mechanism of CaSO4 poisoning commercial V2O5-WO3/TiO2 catalyst for flue gas selective catalytic reduction of NOx with NH3[J]. Journal of Fuel Chemistry and Technology,
;2016, 44(7): 888-896.
SHI Y, XIA Y F, LU B H, LIU N, ZHANG L, LI S J, LI W. Emission inventory and trends of NOx for China, 2000-2020[J]. J Zhejiang Univ Sci A, 2014,15(6):454-464. doi: 10.1631/jzus.A1300379
GONG Li-xian, WANG Tao-ming. The air pollutants emission standards of the coal-fired power plant GB13223-2011 revision and the selection of dust, sulfur dioxide and nitrogen oxides removal equipment[C]//Renovation and Optimal Operation of Heating Technology in the Large Sets of Proceedings 2012 Annual Meeting Memoir. Wuxi: CSEE, 2012: 27-30.
SANG Qi, LE Yuan-yuan, XU Han. Emission standards、current situation and reduction technology of air pollutants for thermal power plants[J]. Zhejiang Elect Power, 2011,30(12):42-46.
CAI Xiao-feng, LI Xiao-yun. Hybrid SNCR-SCR denitrification technique and its application[J]. Elect Power Environ Prot, 2008,24(3):26-29.
ZHONG Zhao-ping, ZHANG Xi-yun, YANG Bi-yuan, YAO Jie. Effects of potassium, sodium, zinc and phosphorus on flue gas de-NOx performance over V2O5/TiO2 catalysts[J]. J Southeast Univ (Nat Sci Ed), 2013,43(3):548-552.
YUN Duan, DENG Si-li, SONG Qiang, YAO Qiang. Potassium deactivation and regeneration method of V2O5-WO3/TiO2 SCR catalyst[J]. Res Environ Sci, 2009,22(6):730-735.
SHEN Bo-xiong, XIONG Li-xian, LIU Ting, WANG Jing, TIAN Xiao-juan. Alkali deactivation and regeneration of nano V2O5-WO3/TiO2 catalysts[J]. J Fuel Chem Technol, 2010,38(1):85-90.
BENSON S A, LAUMB J D, CROCKER C R, PAVLISH J H. SCR catalyst performance in flue gases derived from subbituminous and lignite coals[J]. Fuel Process Technol, 2005,86(5):577-613. doi: 10.1016/j.fuproc.2004.07.004
NICOSIA D, CZEKAJ I, KROCHER O. Chemical deactivation of V2O5-WO3/TiO2 SCR catalysts by additives and impurities from fuels, lubrication oils and urea solution: Part Ⅱ. Characterization study of the effect of alkali and alkaline earth metals[J]. Appl Catal B: Environ, 2008,77(3):228-236.
SHEN Bo-xiong, DENG Li-dan, MA Juan, ZUO Chen, HAO Xiao-cui. Calcium deactivation of Mn-CeOx/Ti-PILCs low-temperature SCR catalyst[J]. Environ Pollut Control, 2011,33(3):1-5.
SHANG Xue-song, CHEN Jin-sheng, YAO Yuan, HU Gong-ren. Study on calcium poisoning of commercial SCR de-NOx catalyst[J]. Chin J Environ Eng, 2013,7(2):624-630.
ZHANG Qiu-Lin. Influence of CaO to the selection of SCR catalyst[J]. Energy Res Util, 2006,6008.
GAO Feng-yu, TANG Xiao-long, YI Hong-hong, ZHAO Shun-zheng, LI Dong, MA Ding, MA Tong-tong. Studies on calcium poisoning mechanism and regeneration of commercial DeNOx SCR catalysts[J]. J Cent South Univ (Nat Sci Ed), 2015,46(6):2382-2390.
MARIANA A, RAMOS L, LUIS C C. Effect of sulfates and reduced-vanadium species on oxidative desulfurization (ODS) with V2O5/TiO2 catalyst[J]. Ind Eng Chem Res, 2011,50(5):2641-2649. doi: 10.1021/ie1006728
CHEN Ting, GUAN Bin, LIN He, ZHU Lin. In situ DRIFTS study of the mechanism of low temperature selective catalytic reduction over manganese-iron oxides[J]. Chin J Catal, 2014,35(3):294-301. doi: 10.1016/S1872-2067(12)60730-X
BONINGARI T, PANAGIOTIS G S. Nickel-doped Mn/TiO2 as an efficient catalyst for the low-temperature SCR of NO with NH3: Catalytic evaluation and characterizations[J]. J Catal, 2012,288:74-83. doi: 10.1016/j.jcat.2012.01.003
SI Z C, WENG D, WU X D, LI J, LI G. Structure, acidity and activity of CuOx/WOx-ZrO2 catalyst for selective catalytic reduction of NO by NH3[J]. J Catal, 2010,271(1):43-51. doi: 10.1016/j.jcat.2010.01.025
LI Qian, GU Hua-chun, LI Ping, ZHOU Yu-hao, LIU Ying, QI Zhong-nan, XIN Ying, ZHANG Zhao-liang. In situ IR studies of selective catalytic reduction of NO with NH3 on Ce-Ti amorphous oxides[J]. Chin J Catal, 2014,35(8):1289-1298. doi: 10.1016/S1872-2067(14)60154-6
TSYGANENKO A A, POZDNYAKOV D V, FILIMONV V N. Infrared study of surface species arising from ammonia adsorption on oxides surfaces[J]. J Mol Struct, 1975,29(2):299-318. doi: 10.1016/0022-2860(75)85038-1
NICOSIA D, CZEKAJ I, KMCHER O. Chemical deactivation of V2O5-WO3/TiO2 SCR catalysts by additives and impurities from fuels, 1ubrication oils and urea solution, part II. Characterization study of the effect of alkali and alkaline earth metals[J]. Appl Catal B: Environ, 2008,77(3/4):228-236.
XIN Qin, LUO Meng-fei. Modern Catalytic Research Methods[M]. Beijing: Science Press, 2009: 83.
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
Shuangxi Li , Huijun Yu , Tianwei Lan , Liyi Shi , Danhong Cheng , Lupeng Han , Dengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240
Fei ZHOU , Xiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236
Jun LUO , Baoshu LIU , Yunchang ZHANG , Bingkai WANG , Beibei GUO , Lan SHE , Tianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240
Jiajie Li , Xiaocong Ma , Jufang Zheng , Qiang Wan , Xiaoshun Zhou , Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117
Yunhao Zhang , Yinuo Wang , Siran Wang , Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083
Yu Wang , Haiyang Shi , Zihan Chen , Feng Chen , Ping Wang , Xuefei Wang . 具有富电子Ptδ-壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-. doi: 10.1016/j.actphy.2025.100081
Xilin Zhao , Xingyu Tu , Zongxuan Li , Rui Dong , Bo Jiang , Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106
Yuejiao An , Wenxuan Liu , Yanfeng Zhang , Jianjun Zhang , Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020
Baitong Wei , Jinxin Guo , Xigong Liu , Rongxiu Zhu , Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003
Tieping CAO , Yuejun LI , Dawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366
Xianghai Song , Xiaoying Liu , Zhixiang Ren , Xiang Liu , Mei Wang , Yuanfeng Wu , Weiqiang Zhou , Zhi Zhu , Pengwei Huo . Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-. doi: 10.1016/j.actphy.2025.100055
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
Junjie Zhang , Yue Wang , Qiuhan Wu , Ruquan Shen , Han Liu , Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
Shihui Shi , Haoyu Li , Shaojie Han , Yifan Yao , Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002
Dong-Xue Jiao , Hui-Li Zhang , Chao He , Si-Yu Chen , Ke Wang , Xiao-Han Zhang , Li Wei , Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304
Zhuoyan Lv , Yangming Ding , Leilei Kang , Lin Li , Xiao Yan Liu , Aiqin Wang , Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015
(a): fresh; (b): sample 1; (c): sample 2; (d): 0.1CaSO4/TiO2; (e): 0.2CaSO4/TiO2; (f): 0.3CaSO4/TiO2; (g): 0.4CaSO4/TiO2
(a): the deactivated catalyst simulated by impregation method; (b): the deactivated catalyst simulated by aerosol method
(a): 0.1CaSO4/TiO2; (b): 0.2 CaSO4/TiO2; (c): 0.3 CaSO4/TiO2; (d): 0.4 CaSO4/TiO2; (e): different Ca/Ti mol ratios at 400 ℃; (f): sample 1; (g): sample 2
(a): the deactivated catalyst simulated by impregation method; (b): the deactivated catalyst simulated by aerosol method