Citation: WANG Jun-jie, ZHANG Ya-ping, WANG Wen-xuan, XIAO Rui, LI Juan, GUO Wan-qiu. Mechanism of CaSO4 poisoning commercial V2O5-WO3/TiO2 catalyst for flue gas selective catalytic reduction of NOx with NH3[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(7): 888-896. shu

Mechanism of CaSO4 poisoning commercial V2O5-WO3/TiO2 catalyst for flue gas selective catalytic reduction of NOx with NH3

  • Corresponding author: ZHANG Ya-ping, amflora@seu.edu.cn
  • Received Date: 7 December 2015
    Revised Date: 29 February 2016

    Fund Project: the Natural Science Foundation of Jiangsu Province BK2012347The project was supported by the National Natural Science Foundation of China 51306034Key Research Program of Jiangsu Province BE2015677

Figures(7)

  • Based on commercial V2O5-WO3/TiO2 catalyst, two methods to simulate CaSO4 poisoning were designed, and the physico-chemical properties of fresh and poisoned catalysts were investigated by BET specific surface area measurement, X-ray diffraction (XRD), H2 temperature-programmed reduction (H2-TPR), scanning electron microscope (SEM) and in-situ diffuse reflectance infrared spectrometry (in situ DRIFTS). Meanwhile, the catalytic performance for selective catalytic reduction of NO with NH3(NH3-SCR) in a fixed bed was also explored comparatively. SEM results show that CaSO4 plugs the small hole (pore width smaller than 2.7 nm) and big hole (pore width bigger than 17.8 nm), causing the loss of surface area and pore volume. CaSO4 could weaken the intensity of both Br∅nsted acid Sites and Lewis acid sites, particularly the active centers of Br∅nsted acid sites, which hinders the absorption of NH3 and reduces the redox abilities.
  • 加载中
    1. [1]

      SHI Y, XIA Y F, LU B H, LIU N, ZHANG L, LI S J, LI W. Emission inventory and trends of NOx for China, 2000-2020[J]. J Zhejiang Univ Sci A, 2014,15(6):454-464. doi: 10.1631/jzus.A1300379

    2. [2]

      GONG Li-xian, WANG Tao-ming. The air pollutants emission standards of the coal-fired power plant GB13223-2011 revision and the selection of dust, sulfur dioxide and nitrogen oxides removal equipment[C]//Renovation and Optimal Operation of Heating Technology in the Large Sets of Proceedings 2012 Annual Meeting Memoir. Wuxi: CSEE, 2012: 27-30.

    3. [3]

      SANG Qi, LE Yuan-yuan, XU Han. Emission standards、current situation and reduction technology of air pollutants for thermal power plants[J]. Zhejiang Elect Power, 2011,30(12):42-46.  

    4. [4]

      CAI Xiao-feng, LI Xiao-yun. Hybrid SNCR-SCR denitrification technique and its application[J]. Elect Power Environ Prot, 2008,24(3):26-29.  

    5. [5]

      ZHONG Zhao-ping, ZHANG Xi-yun, YANG Bi-yuan, YAO Jie. Effects of potassium, sodium, zinc and phosphorus on flue gas de-NOx performance over V2O5/TiO2 catalysts[J]. J Southeast Univ (Nat Sci Ed), 2013,43(3):548-552.

    6. [6]

      YUN Duan, DENG Si-li, SONG Qiang, YAO Qiang. Potassium deactivation and regeneration method of V2O5-WO3/TiO2 SCR catalyst[J]. Res Environ Sci, 2009,22(6):730-735.

    7. [7]

      SHEN Bo-xiong, XIONG Li-xian, LIU Ting, WANG Jing, TIAN Xiao-juan. Alkali deactivation and regeneration of nano V2O5-WO3/TiO2 catalysts[J]. J Fuel Chem Technol, 2010,38(1):85-90.  

    8. [8]

      BENSON S A, LAUMB J D, CROCKER C R, PAVLISH J H. SCR catalyst performance in flue gases derived from subbituminous and lignite coals[J]. Fuel Process Technol, 2005,86(5):577-613. doi: 10.1016/j.fuproc.2004.07.004

    9. [9]

      NICOSIA D, CZEKAJ I, KROCHER O. Chemical deactivation of V2O5-WO3/TiO2 SCR catalysts by additives and impurities from fuels, lubrication oils and urea solution: Part Ⅱ. Characterization study of the effect of alkali and alkaline earth metals[J]. Appl Catal B: Environ, 2008,77(3):228-236.

    10. [10]

      SHEN Bo-xiong, DENG Li-dan, MA Juan, ZUO Chen, HAO Xiao-cui. Calcium deactivation of Mn-CeOx/Ti-PILCs low-temperature SCR catalyst[J]. Environ Pollut Control, 2011,33(3):1-5.

    11. [11]

      SHANG Xue-song, CHEN Jin-sheng, YAO Yuan, HU Gong-ren. Study on calcium poisoning of commercial SCR de-NOx catalyst[J]. Chin J Environ Eng, 2013,7(2):624-630.  

    12. [12]

      ZHANG Qiu-Lin. Influence of CaO to the selection of SCR catalyst[J]. Energy Res Util, 2006,6008.  

    13. [13]

      GAO Feng-yu, TANG Xiao-long, YI Hong-hong, ZHAO Shun-zheng, LI Dong, MA Ding, MA Tong-tong. Studies on calcium poisoning mechanism and regeneration of commercial DeNOx SCR catalysts[J]. J Cent South Univ (Nat Sci Ed), 2015,46(6):2382-2390.  

    14. [14]

      MARIANA A, RAMOS L, LUIS C C. Effect of sulfates and reduced-vanadium species on oxidative desulfurization (ODS) with V2O5/TiO2 catalyst[J]. Ind Eng Chem Res, 2011,50(5):2641-2649. doi: 10.1021/ie1006728

    15. [15]

      CHEN Ting, GUAN Bin, LIN He, ZHU Lin. In situ DRIFTS study of the mechanism of low temperature selective catalytic reduction over manganese-iron oxides[J]. Chin J Catal, 2014,35(3):294-301. doi: 10.1016/S1872-2067(12)60730-X

    16. [16]

      BONINGARI T, PANAGIOTIS G S. Nickel-doped Mn/TiO2 as an efficient catalyst for the low-temperature SCR of NO with NH3: Catalytic evaluation and characterizations[J]. J Catal, 2012,288:74-83. doi: 10.1016/j.jcat.2012.01.003

    17. [17]

      SI Z C, WENG D, WU X D, LI J, LI G. Structure, acidity and activity of CuOx/WOx-ZrO2 catalyst for selective catalytic reduction of NO by NH3[J]. J Catal, 2010,271(1):43-51. doi: 10.1016/j.jcat.2010.01.025

    18. [18]

      LI Qian, GU Hua-chun, LI Ping, ZHOU Yu-hao, LIU Ying, QI Zhong-nan, XIN Ying, ZHANG Zhao-liang. In situ IR studies of selective catalytic reduction of NO with NH3 on Ce-Ti amorphous oxides[J]. Chin J Catal, 2014,35(8):1289-1298. doi: 10.1016/S1872-2067(14)60154-6

    19. [19]

      TSYGANENKO A A, POZDNYAKOV D V, FILIMONV V N. Infrared study of surface species arising from ammonia adsorption on oxides surfaces[J]. J Mol Struct, 1975,29(2):299-318. doi: 10.1016/0022-2860(75)85038-1

    20. [20]

      NICOSIA D, CZEKAJ I, KMCHER O. Chemical deactivation of V2O5-WO3/TiO2 SCR catalysts by additives and impurities from fuels, 1ubrication oils and urea solution, part II. Characterization study of the effect of alkali and alkaline earth metals[J]. Appl Catal B: Environ, 2008,77(3/4):228-236.

    21. [21]

      XIN Qin, LUO Meng-fei. Modern Catalytic Research Methods[M]. Beijing: Science Press, 2009: 83.

  • 加载中
    1. [1]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    2. [2]

      Shuangxi LiHuijun YuTianwei LanLiyi ShiDanhong ChengLupeng HanDengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240

    3. [3]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    4. [4]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    5. [5]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    6. [6]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    7. [7]

      Yu Wang Haiyang Shi Zihan Chen Feng Chen Ping Wang Xuefei Wang . 具有富电子Ptδ-壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-. doi: 10.1016/j.actphy.2025.100081

    8. [8]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    9. [9]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    10. [10]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    11. [11]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    12. [12]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    13. [13]

      Xianghai Song Xiaoying Liu Zhixiang Ren Xiang Liu Mei Wang Yuanfeng Wu Weiqiang Zhou Zhi Zhu Pengwei Huo . Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-. doi: 10.1016/j.actphy.2025.100055

    14. [14]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    15. [15]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    16. [16]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    17. [17]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    18. [18]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    19. [19]

      Dong-Xue Jiao Hui-Li Zhang Chao He Si-Yu Chen Ke Wang Xiao-Han Zhang Li Wei Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304

    20. [20]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

Metrics
  • PDF Downloads(2)
  • Abstract views(1270)
  • HTML views(196)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return