Citation: ZHOU Jun, LIU Qian, ZHONG Wen-qi, YU Zuo-wei. Migration and transformation law of potassium in the combustion of biomass blended coal[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(8): 929-936. shu

Migration and transformation law of potassium in the combustion of biomass blended coal

  • Corresponding author: LIU Qian, liuqian@seu.edu.cn
  • Received Date: 18 May 2020
    Revised Date: 10 July 2020

    Fund Project: National Natural Science Foundation of China 51976035The project was supported by the National Natural Science Foundation of China (51976035, 51676039)National Natural Science Foundation of China 51676039

Figures(5)

  • The effects of combustion temperature and biomass blending ratio on the release of K, the occurrence form of K in the ash and the change of mineral matter were studied. It is found that combustion temperature has a significant effect on the release of K. At 600-750℃, with an increase in temperature, water-soluble K and NH4Ac-soluble K are released to the gas phase, which makes the release ratio of K fast; while at 750-850℃, water-soluble K and NH4Ac-soluble K begin to convert into other forms of K and are fixed in the ash sample, which makes the release rate of K slow; when the temperature is higher than 850℃, as the temperature increases, the decomposition of HCl-soluble K causes the release rate of K increase again. Through XRD analysis, it is found that the water-soluble K in ash mainly exists in the form of KCl. The production of K2SO4 is affected by both the K content in the raw material and the S/Cl ratio, the higher the content of K in raw materials, and the greater the ratio of S/Cl, the more it will promote the formation of K2SO4. At the same time, it is also found that there is a synergistic effect between biomass and coal combustion. The elements such as Al, Si in coal may react with K in biomass to generate alkaline aluminosilicate, resulting in more K remaining in the ash.
  • 加载中
    1. [1]

      ZHOU H, ZHANG H, LI L, ZHOU B. Ash deposit shedding during Co-combustion of coal and rice hull using a digital image technique in a pilot-scale furnace[J]. Energy Fuels, 2013,27(11):7126-7137. doi: 10.1021/ef401814y

    2. [2]

      DE S, ASSADI M. Impact of cofiring biomass with coal in power plants-A techno-economic assessment[J]. Biomass Bioenergy, 2009,33(2):283-293.  

    3. [3]

      NIU Y, TAN H, HUI S. Ash-related issues during biomass combustion:Alkali-induced slagging, silicate melt-induced slagging (ash fusion), agglomeration, corrosion, ash utilization, and related countermeasures[J]. Prog Energy Combust, 2016,52:1-61. doi: 10.1016/j.pecs.2015.09.003

    4. [4]

      YANG Guang. Study on migration of alkali metals during biomass combustion[D]. Guangzhou: South China University of Technology, 2012. 

    5. [5]

      YE Jia-ming, JIN Xi, YANG Jin-xin, DENG Lei, CHE De-fu. Study on the release and migration of potassium during biomass pyrolysis and combustion[J]. J Eng Thermophys, 2017,38(9):2033-2037.  

    6. [6]

      NARAYAN V, JENSEN P A, HENRIKSEN U B, GLARBORG P, LIN W, NIELSEN R G. Defluidization in fluidized bed gasifiers using high-alkali content fuels[J]. Biomass Bioenergy, 2016,91:160-174. doi: 10.1016/j.biombioe.2016.05.009

    7. [7]

      ROBINSON A L, JUNKER H, BAXTER L L. Pilot-scale investigation of the influence of coal-biomass cofiring on ash deposition[J]. Energy Fuels, 2002,16(2):343-355. doi: 10.1021/ef010128h

    8. [8]

      XUE Z, ZHONG Z, ZHANG B, ZHANG J, XIE X. Potassium transfer characteristics during co-combustion of rice straw and coal[J]. Appl Therm Eng, 2017,124:1418-1424. doi: 10.1016/j.applthermaleng.2017.06.116

    9. [9]

      ABREU P, CASACA C, COSTA M. Ash deposition during the co-firing of bituminous coal with pine sawdust and olive stones in a laboratory furnace[J]. Fuel, 2010,89(12):4040-4048. doi: 10.1016/j.fuel.2010.04.012

    10. [10]

      WU D, WANG Y, WANG Y, LI S, WEI X. Release of alkali metals during co-firing biomass and coal[J]. Renewable Energy, 2016,96:91-97. doi: 10.1016/j.renene.2016.04.047

    11. [11]

      LIU Y, HE Y, WANG Z, XIA J, WAN K, WHIDDON R, CEN K. Characteristics of alkali species release from a burning coal/biomass blend[J]. Appl Energy, 2018,215:523-531. doi: 10.1016/j.apenergy.2018.02.015

    12. [12]

      HÄRINEN V, HERNBERG R, AHO M. Demonstration of plasma excited atomic resonance line spectroscopy for on-line measurement of alkali metals in a 20kW bubbling fluidized bed[J]. Fuel, 2004,83(7):791-797.  

    13. [13]

      JOHANSEN J M, JAKOBSEN J G, FRANDSEN F J, GLARBORG P. Release of K, Cl, and S during pyrolysis and combustion of high-chlorine biomass[J]. Energy Fuels, 2011,25(11):4961-4971. doi: 10.1021/ef201098n

    14. [14]

      LIU Y, CHENG L, ZHAO Y, JI J, WANG Q, LUO Z, BAI Y. Transformation behavior of alkali metals in high-alkali coals[J]. Fuel Process Technol, 2018,169:288-294. doi: 10.1016/j.fuproc.2017.09.013

    15. [15]

      LIU Ying-zu. Laser measurement and numerical simulation of alkali metal release during combustion of single particle coal and biomass[D]. Hangzhou: Zhejiang University, 2018. 

    16. [16]

      XIE Xing-yun. Experimental study on the occurrence form and heat release of alkali metals in biomass[D]. Beijing: North China Electric Power University, 2019. 

    17. [17]

      ZHANG J, HAN C L, YAN Z, LIU K L, XU Y Q, SHENG C D, PAN W P. The varying characterization of alkali metals (Na, K) from coal during the initial stage of coal combustion[J]. Energy Fuels, 2001,15(4):786-793. doi: 10.1021/ef000140u

    18. [18]

      GUO D, WU S, LIU B, YIN X, YANG Q. Catalytic effects of NaOH and Na2CO3 additives on alkali lignin pyrolysis and gasification[J]. Appl Energy, 2012,95:22-30. doi: 10.1016/j.apenergy.2012.01.042

    19. [19]

      DAYTON D C, BELLE-OUDRY D, NORDIN A. Effect of coal minerals on chlorine and alkali metals released during biomass/coal cofiring[J]. Energy Fuels, 1999,13(6):1203-1211. doi: 10.1021/ef9900841

    20. [20]

      ZHANG B, ZHONG Z, XUE Z, XUE J, XU Y. Release and transformation of potassium in co-combustion of coal and wheat straw in a BFB reactor[J]. Appl Therm Eng, 2018,144:1010-1016. doi: 10.1016/j.applthermaleng.2018.09.021

    21. [21]

      JURADO N, SIMMS N J, ANTHONY E J, OAKEY J E. Effect of co-firing coal and biomass blends on the gaseous environments and ash deposition during pilot-scale oxy-combustion trials[J]. Fuel, 2017,197:145-158. doi: 10.1016/j.fuel.2017.01.111

    22. [22]

      LI R, KAI X, YANG T, SUN Y, HE Y, SHEN S. Release and transformation of alkali metals during co-combustion of coal and sulfur-rich wheat straw[J]. Energy Convers Manage, 2014,83:197-202. doi: 10.1016/j.enconman.2014.02.059

    23. [23]

      SONG G, YANG S, SONG W, QI X. Release and transformation behaviors of sodium during combustion of high alkali residual carbon[J]. Appl Therm Eng, 2017,122:285-296. doi: 10.1016/j.applthermaleng.2017.04.139

    24. [24]

      LUPIÁÑEZ C, MAYORAL M C, GUEDEA I, ESPATOLERO S, DÍEZ L I, LAGUARTA S, ANDRÉS J M. Effect of co-firing on emissions and deposition during fluidized bed oxy-combustion[J]. Fuel, 2016,184:261-268. doi: 10.1016/j.fuel.2016.07.027

    25. [25]

      AHO M, FERRER E. Importance of coal ash composition in protecting the boiler against chlorine deposition during combustion of chlorine-rich biomass[J]. Fuel, 2005,84(2):201-212.  

  • 加载中
    1. [1]

      Zhonghan Xu Yuejia Li Kin Shing Chan . 碳中和新旅程. University Chemistry, 2025, 40(6): 167-171. doi: 10.12461/PKU.DXHX202407075

    2. [2]

      Qianqian ZHULihui XUHong PANChengjian YAOHong ZHAONan MAXiaolin SHIZihan SHENWeijun ZHANGZhongjian WANG . Waste cotton fabric-ased porous carbon materials: Preparation and wave-absorbing properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1555-1564. doi: 10.11862/CJIC.20250040

    3. [3]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

    4. [4]

      Xinlong XUChunxue JINGYuzhen CHEN . Bimetallic MOF-74 and derivatives: Fabrication and efficient electrocatalytic biomass conversion. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1545-1554. doi: 10.11862/CJIC.20250046

    5. [5]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    6. [6]

      Houzhen Xiao Mingyu Wang Yong Liu Bangsheng Lao Lingbin Lu Minghuai Yu . Course Ideological and Political Design of Combustion Heat Measurement Experiment. University Chemistry, 2024, 39(2): 7-13. doi: 10.3866/PKU.DXHX202310011

    7. [7]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

    8. [8]

      Ying Wang Quanguo Zhai Zhiqiang Wang Qingjuan Lei Shengli Gao . 无机化学中“碱金属元素”教学内容的重构. University Chemistry, 2025, 40(6): 85-92. doi: 10.12461/PKU.DXHX202407049

    9. [9]

      Zuozhong Liang Lingling Wei Yiwen Cao Yunhan Wei Haimei Shi Haoquan Zheng Shengli Gao . Exploring the Development of Undergraduate Scientific Research Ability in Basic Course Instruction: A Case Study of Alkali and Alkaline Earth Metal Complexes in Inorganic Chemistry. University Chemistry, 2024, 39(7): 247-263. doi: 10.3866/PKU.DXHX202310103

    10. [10]

      Shuyong Zhang Yaxian Zhu Wenqing Zhang Yuzhi Wang Jing Lu . Ideological and Political Design of Combustion Heat Measurement Experiment: Determination of Heat Value of Agricultural and Forestry Wastes. University Chemistry, 2024, 39(2): 1-6. doi: 10.3866/PKU.DXHX202303026

    11. [11]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    12. [12]

      Jia-He Li Yu-Ze Liu Jia-Hui Ma Qing-Xiao Tong Jian-Ji Zhong Jing-Xin Jian . 洛芬碱衍生物的合成、化学发光与重金属离子检测. University Chemistry, 2025, 40(6): 230-237. doi: 10.12461/PKU.DXHX202407080

    13. [13]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    14. [14]

      Chi Zhang Yi Xu Xiaopeng Guo Zian Jie Ling Li . 五彩斑斓的秘密——物质显色机理. University Chemistry, 2025, 40(6): 266-275. doi: 10.12461/PKU.DXHX202407061

    15. [15]

      Yuhang Jiang Weijie Liu Jiaqi Cai Jiayue Chen Yanping Ren Pingping Wu Liulin Yang . A Journey into the Science and Art of Sugar: “Dispersion of Light and Optical Rotation of Matter” Science Popularization Experiment. University Chemistry, 2024, 39(9): 288-294. doi: 10.12461/PKU.DXHX202401054

    16. [16]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

    17. [17]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    18. [18]

      Tianyang Yu Hao Wei . “Illness Enters through the Mouth”: A Brief Overview of Toxic Chemical Substances in Common Foods. University Chemistry, 2025, 40(7): 225-231. doi: 10.12461/PKU.DXHX202409083

    19. [19]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    20. [20]

      Yi Fan Zhuoqi Jiang Zhipeng Li Xuan Zhou Jingan Lin Laiying Zhang Xu Hou . 偶极诱导液体门控可视化物质检测——化学“101计划”表界面性质应用实验新设计. University Chemistry, 2025, 40(8): 265-271. doi: 10.12461/PKU.DXHX202410061

Metrics
  • PDF Downloads(9)
  • Abstract views(1790)
  • HTML views(239)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return