Citation: YAN Dong-jie, YU Ya, HUANG Xue-min, LIU Shu-jun, LIU Ying-hui. Poisoning effect of SO2 on Mn-Ce/TiO2 catalysts for NO reduction by NH3 at low temperature[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(02): 232-238. shu

Poisoning effect of SO2 on Mn-Ce/TiO2 catalysts for NO reduction by NH3 at low temperature

  • Corresponding author: YAN Dong-jie, 
  • Received Date: 9 June 2015
    Available Online: 14 September 2015

    Fund Project: 国家自然科学基金(51408455) (51408455)陕西省教育厅科研计划(14JK1392)项目资助. (14JK1392)

  • Effects of SO2 on performance of Mn-Ce/TiO2 catalysts were investigated in the selective catalytic reduction of NO with NH3.The catalysts were characterized by BET surface area,X-ray diffraction(XRD),scanning electron microscope(SEM),X-ray photoelectron spectroscopy(XPS),respectively.The results show that SO2 has inhibitory effect on the selective catalytic reduction(SCR),and NOx conversion decreases from 84% to 42% at 140℃.This is mainly because the presence of SO2 results in the decrease of the specific surface area of the catalysis and the pore size distribution of 5-10 nm.SO2 can cause TiO2 transformation from anatase to rutile phase,the crystallization phenomenon of active components MnOx,and the decrease of the strong interaction between Mn and Ti.The variations of physical and chemical properties of poisoned Mn-Ce/TiO2 catalyst block the O2-→O-→O2- conversion path,which reduces the proportion of higher catalytic activity component MnO2 in MnOx,weakens oxygen storage ability of CeOx,and accumulates absorbed oxygen on the catalyst surface decreasing the adsorption and desorption of NO on active sites.Ammonium sulfate formed on the catalyst surface covers the Lewis acid sites and decreases the adsorption amount of NH3.
  • 加载中
    1. [1]

      [1] TIAN W,YANG H S,FAN X Y,ZHANG X B.Catalytic reduction of NOx with NH3 over different-shaped MnO2 at low temperature[J].J Hazard Mater,2011,188(1/3):105-109.

    2. [2]

      [2] LIU W,TONG Z Q,LUO J.Low temperature selective catalytic reduction of NO with NH3 over Ce-Mn/TiO2 catalyst[J].Acta Sci Circumst,2006,26(8):1240-1245.

    3. [3]

      [3] BUSCA G,LIETTI L,RAMIS G,BERTI F.Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts[J].Appl Catal B:Environ,1998,18(1/2):1-36.

    4. [4]

      [4] FORZATTI P.Present ststus and perspective in de-NOx SCR catalysis[J].Appl Catal A:Gen,2001,222(1/2):221-236.

    5. [5]

      [5] CHEN Z H,YANG Q,LI H,LI X H,WANG L F,TSANG C.Cr-MnOx mixed-oxide catalysts for selective catalytic reduction of NOx with NH3 at low temperature[J].J Catal,2010,276(1):56-65.

    6. [6]

      [6] ZUO J L,CHEN Z H,WANG F R,YU Y H,WANG L F,LI X H.Low-temperature selective catalytic reduction of NOx with NH3 over novel Mn-Zr mixed oxide catalysts[J].Ind Eng Chem Res,2014,53(7):2647-2655.

    7. [7]

      [7] CHEN Z H,WANG F R,LI H,YANG Q,WANG L F,LI X H.Low-temperature selective catalytic reduction of NOx with NH3 over Fe-Mn mixed-oxide catalysts containing Fe3Mn3O8 phase[J].Ind Eng Chem Res,2012,51(1):202-212.

    8. [8]

      [8] LIU Z M,ZHU J Z,LI J H,MA L L,WOO S L.Novel Mn-Ce-Ti mixed-oxide catalyst for the selective catalytic reduction of NOx with NH3[J].ACS Appl Mater Inter,2014,6(16):14500-14508.

    9. [9]

      [9] GU T T,JIN R B,LIU Y,LIU H F,WENG X L,WU Z B.Promoting effect of calcium doping on the performances of MnOx/TiO2 catalysts for NO reduction with NH3 at low temperature[J].Appl Catal B:Environ,2013,129(3):30-38.

    10. [10]

      [10] WU Z B,JIN R B,WANG H Q,LIU Y.Effect of ceria doping on SO2 resistance of Mn/TiO2 for selective catalytic reduction of NO with NH3 at low temperature[J].Catal Commun,2009,10(6):935-939.

    11. [11]

      [11] JIN R B,LIU Y,WANG Y,CEN W L,WU Z B,WANG H Q,WENG X L.The role of cerium in the improved SO2 tolerance for NO reduction with NH3 over Mn-Ce/TiO2 catalyst at low temperature[J].Appl Catal B:Environ,2014,148/149(4):582-588.

    12. [12]

      [12] SING K S W,EVEWETT D H,HAUL R A W,MOSCOU L,PIEROTTO R A,ROUQUÉROL J,SIEMIENIEWSKA T.Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity[J].Pure Appl Chem,1985,57(4):603-619.

    13. [13]

      [13] TANG X L,HAO J M,YI H H.Low-temperature SCR of NO with NH3 over AC/C supported manganese-catalysts[J].Catal Today,2007,126(3/4):406-411.

    14. [14]

      [14] ZHANG X,JI L Y,ZHANG S C,YANG W S.Synthesis of a novel polyaniline-intercalated layered manganese oxide nanocomposite as electrode material for electrochemical capacitor[J].J Power Sources,2007,173(2):1017-1023.

    15. [15]

      [15] KAPTEIJN F,SINGOREDJO L,ANDREINI A,MOULIJN J A.Activity and selectivity of pure manganese oxides in the selective catalytic reduction of nitric oxide with ammonia[J].Appl Catal B:Environ,1994,3(2/3):173-189.

    16. [16]

      [16] PAPARAZZO E.Some notes on XPS Mn 2p and Ce 3d spectra of MnOx-ceria catalysts[J].Catal Today,2012,185(1):319-321.

    17. [17]

      [17] GUO Y F,LIAO X B,HE J H,QU W J,YE D Q.Effect of manganese oxide catalyst on the dielectric barrier discharge decomposition of toluene[J].Catal Today,2010,153(3/4):176-183.

    18. [18]

      [18] YE Q,ZHAO J S,HUO F F,WANG J,CHENG S Y,KANG T F,DAI H X.Nanosized Ag/α-MnO2 catalysts highly active for the low-temperature oxidation of carbon monoxide and benzene[J].Catal Today,2011,175(1):603-609.

    19. [19]

      [19] JARRIGE J,VERVISCH P.Plasma-enhanced catalysis of propane and isopropyl alcohol at ambient temperature on a MnO2-based catalyst[J].Appl Catal B:Environ,2009,90(1):74-82.

    20. [20]

      [20] 陈建军.锰基催化剂研制及其低温选择催化还原NOx机理研究[D].北京:清华大学,2007.(CHEN Jian-jun.Study on Mn-based catalysts and mechanism for selective catalytic reduction of NOx at low-temperature[D].Beijing:Tsinghua University,2007.)

    21. [21]

      [21] REDDY B M,SREEKANTH P M,YAMADA Y,XU Q,KOBAYASHI T.Surface characterization of sulfate,molybdate,and tungstate promoted TiO2-ZrO2 solid acid catalysts by XPS and other techniques[J].Appl Catal A:Gen,2002,228(1/2):269-278.

    22. [22]

      [22] 陈博吴,马运生,丁良兵,许令顺,邬宗芸,袁青,黄伟新.NO在Cu(111)表面吸附和分解的XPS和TPD研究:不同氧物种的影响[J].催化学报,2013,34(5):964-972.(CHEN Bo-wu,MA Yun-sheng,DING Liang-bing,XU Ling-shun,WU Zong-yun,YUAN Qing,HUANG Wei-xin.XPS and TPD study of NO interaction with Cu(111):Role of different oxygen species[J].Chin J Catal,2013,34(5):964-972.)

    23. [23]

      [23] ROMANO E J,SCHULZ K H.A XPS investigation of SO2 adsorption on ceria-zirconia mixed-metal oxides[J].Appl Surf Sci,2005,246(1/3):262-270.

    24. [24]

      [24] TAUSTER S J,FUNG S C,BAKER R T,HORSLEY J A.Strong interactions in supported-metal catalysts[J].Science,1981,211(4487):1121-1125.

  • 加载中
    1. [1]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    2. [2]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    3. [3]

      Shuangxi LiHuijun YuTianwei LanLiyi ShiDanhong ChengLupeng HanDengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240

    4. [4]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    5. [5]

      Cuiwu MOGangmin ZHANGChao WUZhipeng HUANGChi ZHANG . A(NH2SO3) (A=Li, Na): Two ultraviolet transparent sulfamates exhibiting second harmonic generation response. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1387-1396. doi: 10.11862/CJIC.20240045

    6. [6]

      Yu-Yu TanLin-Heng HeWei-Min He . Copper-mediated assembly of SO2F group via radical fluorine-atom transfer strategy. Chinese Chemical Letters, 2024, 35(9): 109986-. doi: 10.1016/j.cclet.2024.109986

    7. [7]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    8. [8]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    9. [9]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    10. [10]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    11. [11]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    12. [12]

      Zhiqiang WangYajie GaoTianjun WangWei ChenZefeng RenXueming YangChuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602

    13. [13]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    14. [14]

      Xiaofang Li Zhigang Wang . Modulating dz2-orbital occupancy of Au cocatalysts for enhanced photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-. doi: 10.1016/j.actphy.2025.100080

    15. [15]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    16. [16]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    17. [17]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    18. [18]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    19. [19]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    20. [20]

      Linlu BaiWensen LiXiaoyu ChuHaochun YinYang QuEkaterina KozlovaZhao-Di YangLiqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931

Metrics
  • PDF Downloads(0)
  • Abstract views(626)
  • HTML views(73)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return