Citation: LIU Xin, NING Ping, LI Hao, SONG Zhong-xian, WANG Yan-cai, ZHANG Jin-hui, TANG Xiao-su, WANG Ming-zhi, ZHANG Qiu-lin. Probing NH3-SCR catalytic activity and SO2 resistance over aqueous-phase synthesized Ce-W@TiO2 catalyst[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(02): 225-231. shu

Probing NH3-SCR catalytic activity and SO2 resistance over aqueous-phase synthesized Ce-W@TiO2 catalyst

  • Corresponding author: ZHANG Qiu-lin, 
  • Received Date: 15 September 2015
    Available Online: 29 November 2015

    Fund Project: 国家自然科学基金(U1137603,201307047)项目资助. (U1137603,201307047)

  • A series of mixed Ce,W and Ti oxides catalysts have been prepared and employed to selective catalytic reduction of NO with ammonia(NH3-SCR).It was found that Ce-W@TiO2 exhibited the optimal catalytic activity.Over 90% of NO conversion could be obtained by the surface TiO2-coated Ce-W@TiO2 catalyst at 205-515℃.The presence of SO2 leads to a decrease of low-temperature NO catalytic conversion and an increase of NO conversion above 425℃ over various catalysts,while Ce-W@TiO2 exhibits the optimal low-temperature SO2 resistance.It is noted that introducing Ti into Ce-W mixed oxide via the conventional co-precipitation method attributed to the decrease of surface W atomic abundance and acidic sites as well as inferior low-temperature NO conversion and SO2 resistance.In contrast,the surface TiO2-coated Ce-W@TiO2 catalyst prepared via a modified aqueous-phase method exhibit increased surface W atomic abundance and acidic sites as well as the superior low-temperature NO conversion and SO2 resistance.
  • 加载中
    1. [1]

      [1] 刘亚明,束摇航,徐齐胜,张玉华,杨林军.SCR脱硝过程中SO2催化氧化的原位红外研究[J].燃料化学学报,2015,43(8):1018-1024.(LIU Ya-ming,SHU Hang,XU Qi-sheng,ZHANG Yu-hua,YANG Lin-jun.FT-IR study of the catalytic oxidation of SO2 during the process of selective catalytic reduction of NO with NH3 over commercial catalysts[J].J Fuel Chem Technol,2015,43(8):1018-1024).

    2. [2]

      [2] GARCÍA-BORDEJÉ E,CALVILLO L,LÁZARO M J,MOLINER R.Vanadium supported on carbon-coated monoliths for the SCR of NO at low temperature:Effect of pore structure[J].Appl Catal B:Environ,2004,50(4):235-242.

    3. [3]

      [3] BRANDENBERGER S,KRÖCHER O,TISSLER A,ALTHOFF R.The state of the art in selective catalytic reduction of NOx by ammonia using metal-exchanged zeolite catalysts[J].Catal Rev:Sci Eng,2008,50(4):492-531.

    4. [4]

      [4] GU T T,JIN R B,LIU Y,LIU H F,WENG X L,WU Z B.Promoting effect of calcium doping on the performances of MnOx/TiO2 catalysts for NO reduction with NH3 at low temperature[J].Appl Catal B:Environ,2013,129:30-38.

    5. [5]

      [5] LI J H,CHEN J J,KE R,LUO C K,HAO J M.Effect of precursors on the surface Mn species and the activities for NO reduction over MnOx/TiO2 catalyst[J].Catal Commun,2007,8(12):1896-1900.

    6. [6]

      [6] LI J H,CHANG H Z,MA L,HAO J M,YANG R T.Low-temperature selective catalytic reduction of NOx with NH3 over metal oxide and zeolite catalysts-A review[J].Catal Today,2011,175(1):147-156.

    7. [7]

      [7] KOEBEL M,ELSENER M,KLEEMANN M.Urea-SCR:A promising technique to reduce NOx emissions from automotive diesel engines[J].Catal Today,2000,59(3/4):335-345.

    8. [8]

      [8] PENG Y,LI K Z,LI J H.Identification of the active sites on CeO2-WO3 catalysts for SCR of NOxwith NH3:An in situ IR and Raman spectroscopy study[J].Appl Catal B:Environ,2013,140-141:483-492.

    9. [9]

      [9] LIU F D,YU Y B,HE H.Environmentally-benign catalysts for the selective catalytic reduction of NOx from diesel engines:Structure-activity relationship and reaction mechanism aspects[J].Chem Commun,2014,50(62):8445-8463.

    10. [10]

      [10] GAO X,JIANG Y,ZHONG Y,LUO Z Y,CEN K F.The activity and characterization of CeO2-TiO2 catalysts prepared by the sol-gel method for selective catalytic reduction of NO with NH3[J].J Hazard Mater,2010,174(1/3):734-739.

    11. [11]

      [11] GAO X,JIANG Y,FU Y C,ZHONG Y,LUO Z Y,CEN K F.Preparation and characterization of CeO2/TiO2 catalysts for selective catalytic reduction of NO with NH3[J].Catal Commun,2010,11(5):465-469.

    12. [12]

      [12] ZHANG Q L,SONG Z X,NING P,LIU X,LI H,GU J J.Novel promoting effect of acid modification on selective catalytic reduction of NO with ammonia over CeO2 catalyst[J].Catal Commun,2015,59:170-174.

    13. [13]

      [13] LIU Z M,LIU Y X,LI Y,SU H,MA L L.WO3 promoted Mn-Zr mixed oxide catalyst for the selective catalytic reduction of NOx with NH3[J].Chem Eng J,2016,283:1044-1050.

    14. [14]

      [14] SHAN W P,LIU F D,HE H,ZHANG C B.A superior Ce-W-Ti mixed oxide catalyst for the selective catalytic reduction of NOx with NH3[J].Appl Catal B:Environ,2012,115-116:100-106.

    15. [15]

      [15] 徐颖,闫东杰,黄学敏,玉亚,刘树军.制备方法对Mn-Ce/TiO2催化剂低温选择性催化还原活性的影响[J].环境工程学报,2015,9(2):862-866.(XU Ying,YAN Dong-jie,HUANG Xue-min,YU Ya,LIU Shu-jun.Effects of preparation methods of Mn-Ce/TiO2 catalyst on low temperature SCR activity[J].Chin J Environ Eng,2015,9(2):862-866).

    16. [16]

      [16] NING P,SONG Z X,LI H,ZHANG Q L,LIU X,ZHANG J H,TANG X S,HUNG Z Z.Selective catalytic reduction of NO with NH3 over CeO2-ZrO2-WO3 catalysts prepared by different methods[J].Appl Surf Sci,2015,332:130-137.

    17. [17]

      [17] XU N,YE J W,TANG Y B,MAN C Z,HE G L,YE H,NIN G L.Solvent assisted morphology-controlled synthesis of CeO2 micro/nanostructures[J].Mater Lett,2012,82:199-20.

    18. [18]

      [18] FRANCISCO M S P,MASTELARO V R.Activity and characterization by XPS,HR-TEM,Raman spectroscopy,and BET surface area of CuO/CeO2-TiO2 catalysts[J].J Phys Chem B,2001,105(43):10515-10522.

    19. [19]

      [19] GAO R H,ZHANG D S,MAITARAD P,SHI L Y,RUNGROTMONGKOL T,LI H,ZHANG J P,CAO W G.Morphology-dependent properties of MnOx/ZrO2-CeO2 nanostructures for the selective catalytic reduction of NO with NH3[J].J Phys Chem C,2013,117(20):10502-10511.

    20. [20]

      [20] LARSSON P O,ANDERSSONY A.Complete oxidation of CO,ethanol,and ethyl acetate over copper oxide supported on titania and ceria modified titania[J].J Catal,1998,179(1):72-89.

    21. [21]

      [21] ERNST B,HILAIRE L,KIENNEMANN A.Effects of highly dispersed ceria addition on reducibility,activity and hydrocarbon chain growth of a Co/SiO2 Fischer-Tropsch catalyst[J].Catal Today,1999,50(2):413-427.

    22. [22]

      [22] THROMAT N,GAUTIER-SOYER M,BORDIER G.Formation of the Ce/Y2O3 interface:An in situ XPS study[J].Surf Sci,1996,345(3):290-302.

    23. [23]

      [23] NORMAND F,HILAIRE L,KILI K,KRILL G,MAIRE G.Oxidation state of cerium in cerium-based catalysts investigated by spectroscopic probes[J].J Phys Chem,1988,92(9):2561-2568.

    24. [24]

      [24] 戴韵,李俊华,彭悦,唐幸福.MnO2的晶相结构和表面性质对低温NH3-SCR反应的影响[J].物理化学学报,2012,28(7):1771-1776.(DAI Yun,LI Jun-hua,PENG Yue,TANG Xing-fu.Effects of MnO2 crystal structure and surface property on the NH3-SCR reaction at low temperature[J].Acta Phys Chim Sin,2012,28(7):1771-1776.)

    25. [25]

      [25] KANG M,PARK E D,KIM J M,YIE J E.Manganese oxide catalysts for NOx reduction with NH3 at low temperatures[J].Appl Catal A:Gen,2007,327(2):261-269.

    26. [26]

      [26] CHEN L,LI J H,ABLIKIM W,WANG J,CHANG H Z,MA L,XU J Y,GE M F,ARANDIYAN H.CeO2-WO3 mixed oxides for the selective catalytic reduction of NOx by NH3 over a wide temperature range[J].Catal Lett,2011,141(12):1859-1864.

    27. [27]

      [27] YANG S X,ZHU W P,JIANG Z P,CHEN Z X,WANG J B.The surface properties and the activities in catalytic wet air oxidation over CeO2-TiO2 catalysts[J].Appl Surf Sci,2006,252(24):8499-8505.

    28. [28]

      [28] ENGELMANN-PIREZ M,GRANGER P,LECLERCQ G.Investigation of the catalytic performances of supported noble metal based catalysts in the NO+H2 reaction under lean conditions[J].Catal Today,2005,107-108:315-322.

    29. [29]

      [29] ZHANG Q L,LIU X,NING P,SONG Z X,LI H,GU J J.Enhanced performance in NOx reduction by NH3 over a mesoporous Ce-Ti-MoOx catalyst stabilized by a carbon template[J].Catal Sci Technol,2015,5(4):2260-2269.

  • 加载中
    1. [1]

      Feibin WeiYongfang RaoYu HuangWei WangHui Mei . The new challenges for the development of NH3-SCR catalysts under new situation of energy transition in power generation industry. Chinese Chemical Letters, 2024, 35(6): 108931-. doi: 10.1016/j.cclet.2023.108931

    2. [2]

      Jinpeng DuJunlin ChenYulong ShanTongliang ZhangYu SunZhongqi LiuXiaoyan ShiWenpo ShanYunbo YuHong He . Insight into the effects of C3H6 on fresh and hydrothermally aged Cu-SSZ-39 catalysts. Chinese Chemical Letters, 2025, 36(3): 110019-. doi: 10.1016/j.cclet.2024.110019

    3. [3]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    4. [4]

      Xinghai Li Zhisen Wu Lijing Zhang Shengyang Tao . Machine Learning Enables the Prediction of Amide Bond Synthesis Based on Small Datasets. Acta Physico-Chimica Sinica, 2025, 41(2): 100010-. doi: 10.3866/PKU.WHXB202309041

    5. [5]

      Cuiwu MOGangmin ZHANGChao WUZhipeng HUANGChi ZHANG . A(NH2SO3) (A=Li, Na): Two ultraviolet transparent sulfamates exhibiting second harmonic generation response. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1387-1396. doi: 10.11862/CJIC.20240045

    6. [6]

      Shuangxi LiHuijun YuTianwei LanLiyi ShiDanhong ChengLupeng HanDengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240

    7. [7]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    8. [8]

      Yan ZHAOJiaxu WANGZhonghu LIChangli LIUXingsheng ZHAOHengwei ZHOUXiaokang JIANG . Gd3+-doped Sc2W3O12: Eu3+ red phosphor: Preparation and luminescence performance. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 461-468. doi: 10.11862/CJIC.20240316

    9. [9]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    10. [10]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    11. [11]

      Yang LiYanan DongZhihong WeiChangzeng YanZhen LiLin HeYuehui Li . Fluoride-promoted Ni-catalyzed cyanation of C–O bond using CO2 and NH3. Chinese Chemical Letters, 2025, 36(5): 110206-. doi: 10.1016/j.cclet.2024.110206

    12. [12]

      Jijoe Samuel Prabagar Kumbam Lingeshwar Reddy Dong-Kwon Lim . Visible-light responsive gold nanoparticle and nano-sized Bi2O3-x sheet heterozygote structure for efficient photocatalytic conversion of N2 to NH3. Chinese Journal of Structural Chemistry, 2025, 44(4): 100564-100564. doi: 10.1016/j.cjsc.2025.100564

    13. [13]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    14. [14]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    15. [15]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    16. [16]

      Zhao Lu Hu Lv Qinzhuang Liu Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005

    17. [17]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    18. [18]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    19. [19]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    20. [20]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

Metrics
  • PDF Downloads(1)
  • Abstract views(540)
  • HTML views(30)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return