Citation: HOU Bin, HAN Xin-you, LIN Ming-gui, FANG Ke-gong. Preparation of SiO2-coated CuFe catalysts for synthesis of higher alcohols from CO hydrogenation[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(02): 217-224. shu

Preparation of SiO2-coated CuFe catalysts for synthesis of higher alcohols from CO hydrogenation

  • Corresponding author: FANG Ke-gong, 
  • Received Date: 30 September 2015
    Available Online: 19 November 2015

    Fund Project: 国家自然科学基金(21473230) (21473230)国家高技术研究发展计划(863计划,2012AA051002) (863计划,2012AA051002)中国科学院战略先导项目(XDA01020304)资助. (XDA01020304)

  • A series of SiO2-coated CuFe(SiO2@CuFe) catalysts with different Cu/Fe molar ratios were prepared by co-reduction and in situ coating method.The physicochemical properties of the catalysts were characterized with XRD,TEM,SEM-EDS,XPS and H2-TPR techniques and N2 sorption experiment.It was shown that well-dispersed CuFe nanoparticles were completely coated by mesoporous silica in the as-prepared catalysts.The content of Cu-Fe composite oxide in the catalyst and the selectivity of total alcohols and C+2 alcohols both exhibit a volcano trend with the decrease of Cu/Fe molar ratios.When the Cu/Fe molar ratio was 1,the largest amount of CuFe2O4 was formed,consequently,causing the strongest interaction between Cu and Fe.In addition,the obtained catalyst possessed higher BET surface area and larger BJH pore volume than the other samples.Thus,alcohol products easily diffuse into/out of its pores,thus avoiding the further hydrogenation to hydrocarbons.As a result,it shows the highest selectivity to total alcohols and C+2 alcohols.
  • 加载中
    1. [1]

      [1] MEDFORD A J,LAUSCHE A C,ABILD-PEDERSEN F,TEMEL B,SCHJODT N C,NORSKOV J K,STUDT F.Activity and selectivity trends in synthesis gas conversion to higher alcohols[J].Top Catal,2014,57(1/4):135-142.

    2. [2]

      [2] 肖康,鲍正洪,齐行振,王新星,钟良枢,房克功,林明桂,孙予罕.合成气制混合醇双功能催化研究进展[J].催化学报,2013,34(1):116-129.XIAO Kang,BAO Zheng-hong,QI Xing-zhen,WANG Xin-xing,ZHONG Liang-shu,FANG Ke-gong,LIN Ming-gui,SUN Yu-han.Advances in bifunctional catalysis for higher alcohol synthesis from syngas[J].Chin J Catal,2013,34(1):116-129.

    3. [3]

      [3] ZHANG Q W,LI X H,FUJIMOTO K R.Pd-promoted Cr/ZnO catalyst for synthesis of methanol from syngas[J].Appl Catal A:Gen,2006,309(1):28-32.

    4. [4]

      [4] SMITH K J,ANDERSON R B.A chain growth scheme for the higher alcohols synthesis[J].J Catal,1984,85(2):428-436.

    5. [5]

      [5] LI Z R,FU Y L,JIANG M,MENG M,XIE Y N,HU T D,LIU T.Structures and performance of Pd-Mo-K/Al2O3 catalysts used for mixed alcohol synthesis from synthesis gas[J].Catal Lett,2000,65(1/3):43-48.

    6. [6]

      [6] SHI X R,JIAO H J,HERMANN K,WANG J G.CO hydrogenation reaction on sulfided molybdenum catalysts[J].J Mol Catal A:Chem,2009,312(1/2):7-17.

    7. [7]

      [7] XIANG M L,LI D B,XIAO H C,ZHANG J L,QI H J,LI W H,ZHONG B,SUN Y H.Synthesis of higher alcohols from syngas over Fischer-Tropsch elements modified K/beta-Mo2C catalysts[J].Fuel,2008,87(4/5):599-603.

    8. [8]

      [8] LIU C C,LIN M G,FANG K G,MENG Y,SUN Y H.Preparation of nanostructured molybdenum carbides for CO hydrogenation[J].RSC Adv,2014,4(40):20948-20954.

    9. [9]

      [9] MEI D H,ROUSSEAU R,KATHMANN S M,GLEZAKOU V A,ENGELHARD M H,JIANG W L,WANG C M,GERBER M A,WHITE J F,STEVENS D J.Ethanol synthesis from syngas over Rh-based/SiO2 catalysts:A combined experimental and theoretical modeling study[J].J Catal,2010,271(2):325-342.

    10. [10]

      [10] PRIETO G,CONCEPCION P,MARTINEZ A,MENDOZA E.New insights into the role of the electronic properties of oxide promoters in Rh-catalyzed selective synthesis of oxygenates from synthesis gas[J].J Catal,2011,280(2):274-288.

    11. [11]

      [11] FANG K G,LI D B,LIN M G,XIANG M L,WEI W,SUN Y H.A short review of heterogeneous catalytic process for mixed alcohols synthesis via syngas[J].Catal Today,2009,147(2):133-138.

    12. [12]

      [12] GAO W,ZHAO Y F,LIU J M,HUANG Q W,HE S,LI C M,ZHAO J W,WEI M.Catalytic conversion of syngas to mixed alcohols over CuFe-based catalysts derived from layered double hydroxides[J].Catal Sci Technol,2013,3(5):1324-1332.

    13. [13]

      [13] LU Y W,YU F,HU J,LIU J.Catalytic conversion of syngas to mixed alcohols over Zn-Mn promoted Cu-Fe based catalyst[J].Appl Catal A:Gen,2012,429:48-58.

    14. [14]

      [14] 林明桂,房克功,李德宝,孙予罕.Zn、Mn助剂对CuFe合成低碳醇催化剂的影响[J].物理化学学报,2008,24(5):833-838.(LIN Ming-gui,FANG Ke-gong,LI De-bao,SUN Yu-han.Effect of Zn and Mn promoters on copper-iron based catalysts for higher alcohol synthesis[J].Acta Phys Chem Sin,2008,24(5):833-838.)

    15. [15]

      [15] 林明桂,房克功,李德宝,孙予罕.Cu-Fe基催化剂上CO加氢反应过程中物相的转化行为[J].催化学报,2008,29(6):559-565.(LIN Ming-gui,FANG Ke-gong,LI De-bao,SUN Yu-han.Phase transformation in cu-fe-based catalyst during CO hydrogenation[J].Chin J Catal,2008,29(6):559-565.)

    16. [16]

      [16] XIAO K,BAO Z H,QI X Z,WANG X X,ZHONG L S,FANG K G,LIN M G,SUN Y H.Structural evolution of CuFe bimetallic nanoparticles for higher alcohol synthesis[J].J Mol Catal A:Chem,2013,378:319-325.

    17. [17]

      [17] LIN M G,FANG K G,LI D B,SUN Y H.CO hydrogenation to mixed alcohols over co-precipitated Cu-Fe catalysts[J].Catal Commun,2008,9(9):1869-1873.

    18. [18]

      [18] MOURDIKOUDIS S,LIZ-MARZAN L M.Oleylamine in nanoparticle synthesis[J].Chem Mater,2013,25(9):1465-1476.

    19. [19]

      [19] CARUSO F.Nanoengineering of particle surfaces[J].Adv Mater,2001,13(1):11-22.

    20. [20]

      [20] CHAUDHURI R G,PARIA S.Core/shell nanoparticles:Classes,properties,synthesis mechanisms,characterization,and applications[J].Chem Rev,2012,112(4):2373-2433.

    21. [21]

      [21] COSTI R,SAUNDERS A E,BANIN U.Colloidal hybrid nanostructures:A new type of functional materials[J].Angew Chem,2010,49(29):4878-4897.

    22. [22]

      [22] ZHONG C J,MAYE M M.Core-shell assembled nanoparticles as catalysts[J].Adv Mater,2001,13(19):1507-1511.

    23. [23]

      [23] LI K T,HSU M H,WANG I.Palladium core-porous silica shell-nanoparticles for catalyzing the hydrogenation of 4-carboxybenzaldehyde[J].Catal Commun,2008,9(13):2257-2260.

    24. [24]

      [24] LI L,HE S C,SONG Y Y,ZHAO J,JI W J,Au C T.Fine-tunable Ni@porous silica core-shell nanocatalysts:Synthesis,characterization,and catalytic properties in partial oxidation of methane to syngas[J].J Catal,2012,288:54-64.

    25. [25]

      [25] ZENG B,HOU B,JIA L T,LI D B,SUN Y H.Fischer-Tropsch synthesis over different structured catalysts:The effect of silica coating onto nanoparticles[J].J Mol Catal A:Chem,2013,379:263-268.

    26. [26]

      [26] JOO S H,PARK J Y,TSUNG C K,YAMADA Y,YANG P,SOMORJAI G A.Thermally stable Pt/mesoporous silica core-shell nanocatalysts for high-temperature reactions[J].Nat Mater,2009,8(2):126-131.

    27. [27]

      [27] HU Y J,WANG Y Q,LU Z H,CHEN X S,XIONG L H.Core-shell nanospheres Pt@SiO2 for catalytic hydrogen production[J].Appl Surf Sci,2015,341:185-189.

    28. [28]

      [28] KIRILLOV S A.Surface area and pore volume of a system of particles as a function of their size and packing[J].Microporous Mesoporous Mater,2009,122(1/3):234-239.

    29. [29]

      [29] 辛勤,罗孟飞.现代催化研究方法[M].北京:科学出版社,2009.(XIN Qing,LUO Meng-fei.Modern catalysis research methods[M].Beijing:Science Press,2009.)

    30. [30]

      [30] YAO Q,LU Z H,ZHANG Z,CHEN X,LAN Y.One-pot synthesis of core-shell Cu@SiO2 nanospheres and their catalysis for hydrolytic dehydrogenation of ammonia borane and hydrazine borane[J].Scientific Rep,2014,4:7597.

    31. [31]

      [31] 肖康.铜基双金属纳米颗粒混合醇合成研究[D].上海:中国科学院上海高等研究院,2013.(XIAO Kang.Cu-based bimetallic nanoparticles for higher alcohols synthesis[D].Shanghai:Shanghai Adv ResInst,Chin Acad Sci,2013.)

    32. [32]

      [32] LI F,ZHANG L H,EVANS D G,DUAN X.Structure and surface chemistry of manganese-doped copper-based mixed metal oxides derived from layered double hydroxides[J].Colloids Surf A:Phys Eng Asp,2004,244(1):169-177.

    33. [33]

      [33] LENGLET M,FOULATIER P,DVEB J,ARSÉNE J.Caractérisation de la liaison Cu-O dans les oxydes mixtes CuMM'O 4(M=Fe,Cr;M'=Al,Ga,Mn).Corrélation avec l'effet Jahn-Teller[J].Phys Status Solidi,1986,94(2):461-466.

    34. [34]

      [34] 冉宏峰,房克功,林明桂,孙予罕.Cu/Fe组成对CuFe基低碳醇催化剂的反应性能的影响[J].天然气化工,2010,35(4):1-5.(RAN Hong-feng,FANG Ke-gong,LIN Ming-gui,SUN Yu-han.Effect of Cu/Fe ratios on catalytic performances of co-precipitated Cu-Fe based catalysts for higher alcohols synthesis[J].Nat Gas Chem Ind,2010,35(4):1-5.)

    35. [35]

      [35] LINDNER U,PAPP H.XPS and ISS characterization of potassium or copper containing Fe/Mn oxide catalysts for Fischer-Tropsch synthesis[J].Appl Surf Sci,1988,32(1/2):75-92.

    36. [36]

      [36] DING M Y,YANG Y,WU B S,XU J,ZHANG C H,XIANG H W,LI Y W.Study of phase transformation and catalytic performance on precipitated iron-based catalyst for Fischer-Tropsch synthesis[J].J Mol Catal A:Chem,2009,303(1):65-71.

    37. [37]

      [37] GRZYBEK T,KLINIK J,BUCZEK B.XPS studies of no selective reduction catalysts after SO2 poisoning[J].Surf Interface Anal,1995,23(12):815-822.

    38. [38]

      [38] GRZYBEK T,PAPP H,BAERNS N.Fe/Mn oxide catalysts for fischer-tropsch synthesis:Part VXPS surface characterization of calcined and reduced samples[J].Appl Catal,1987,29(2):335-350.

    39. [39]

      [39] ALLEN G C,HALLAM K R.Characterisation of the spinels M(x)Co(1-x)Fe(2)O(4)(M=Mn,Fe or Ni) using X-ray photoelectron spectroscopy[J].Appl Surf Sci,1996,93(1):25-30.

  • 加载中
    1. [1]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    2. [2]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    3. [3]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    4. [4]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    5. [5]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    6. [6]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    7. [7]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    8. [8]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    9. [9]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    10. [10]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    11. [11]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    12. [12]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    13. [13]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    14. [14]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    15. [15]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    16. [16]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    17. [17]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    18. [18]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    19. [19]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    20. [20]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

Metrics
  • PDF Downloads(0)
  • Abstract views(444)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return