Citation: LIU Hao-ran, LI Xiu-ping, ZHAO Rong-xiang, LI Ping. Preparation of H2WO4/GO and its ultrasonic-oxidative desulfurization in model oil[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(7): 843-851. shu

Preparation of H2WO4/GO and its ultrasonic-oxidative desulfurization in model oil

  • Corresponding author: ZHAO Rong-xiang, zylhzrx@126.com
  • Received Date: 31 January 2019
    Revised Date: 10 May 2019

    Fund Project: The project was supported by Doctoral Fund of Liaoning Province(201501105)Doctoral Fund of Liaoning Province 201501105

Figures(14)

  • H2WO4/GO was prepared by dipping method using tungstic acid and graphene oxide as raw materials. The morphology and structure of H2WO4/GO were characterized by XRD, FT-IR, SEM and BET. The ultrasonic-oxidation desulfurization of model oil containing DBT was carried out with H2WO4/GO as catalyst, H2O2 as oxidant agent and acetonitrile as extractant. Under the optimum conditions with 5 mL of model oil, 30% of tungstic acid loading(mass ratio), 0.02 g of catalyst, 1 mL of acetonitrile, H2O2/S mol ratio of 8, ultrasonic power of 150 W and at 50℃, the removal rate of DBT, 4, 6-DMDBT and BT can reach 96.6%, 81.2%, 72.8%, respectively. Besides, the recycling use of catalyst and the mechanism of ultrasonic-oxidation desulfurization were investigated.
  • 加载中
    1. [1]

      CARNAROGLIO D, GAUDINO E C, MANTEGNA S, MOREIRA E M, VICENTE DE CASTRO A, FLORES E M, CRAVOTTO G. Ultrasound-assisted oxidative desulfurization/denitrification of liquid fuels with solid oxidants[J]. Energy Fuels, 2014,28(3):1854-1859. doi: 10.1021/ef402431e

    2. [2]

      LI C, LI D, ZOU S, LI Z, YIN J, WANG A, CUI Y, YAO Z, ZHAO Q. Extraction desulfurization process of fuels with ammonium-based deep eutectic solvents[J]. Green Chem, 2013,15(10):2793-2799. doi: 10.1039/c3gc41067f

    3. [3]

      CHAMACK M, MAHJOUB A R, AGHAYAN H. Cesium salts of tungsten-substituted molybdophosphoric acid immobilized onto platelet mesoporous silica:Efficient catalysts for oxidative desulfurization of dibenzothiophene[J]. Chem Eng J, 2014,255:686-694. doi: 10.1016/j.cej.2014.06.054

    4. [4]

      LI F, LIU Y, SUN Z, ZHAO Y, LIU R, CHEN L, ZHAO D. Photocatalytic oxidative desulfurization of dibenzothiophene under simulated sunlight irradiation with mixed-phase Fe2O3 prepared by solution combustion[J]. Catal Sci Technol, 2012,2(7):1455-1462. doi: 10.1039/c2cy00485b

    5. [5]

      GAO S, LI J, CHEN X, ABDELTAWAB A A, YAKOUT S M, YU G. A combination desulfurization method for diesel fuel:Oxidation by ionic liquid with extraction by solvent[J]. Fuel, 2018,224:545-551. doi: 10.1016/j.fuel.2018.03.108

    6. [6]

      DING Run-dong, ZU Shi, ZHOU Chuan-hang, WANG Huan, MO Zhou-sheng, QIN Yu-cai, SUN Zhao-lin, SONG Li-juan. Insight into the correlation between the effective adsorption sites and adsorption desulfurization performance of CuNaY zeolite[J]. J Fuel Chem Technol, 2018,46(4):451-458. doi: 10.3969/j.issn.0253-2409.2018.04.010 

    7. [7]

      YANG Y, LV G, LI J, ZHOU C H, WANG H, MO Z S, QIN Y C, SONG L J. Synthesis of ceria nanorods as adsorbent for the adsorption desulfurization of gasoline fuel[J]. J Alloys Compd, 2018,747:189-196. doi: 10.1016/j.jallcom.2018.03.026

    8. [8]

      ZHANG Y, LI G, KONG L, LU H. Deep oxidative desulfurization catalyzed by Ti-based metal-organic frameworks[J]. Fuel, 2018,219:103-110. doi: 10.1016/j.fuel.2018.01.050

    9. [9]

      GAO Y, GAO R, ZHANG G, ZHENG Y, ZHAO J. Oxidative desulfurization of model fuel in the presence of molecular oxygen over polyoxometalate based catalysts supported on carbon nanotubes[J]. Fuel, 2018,224:261-270. doi: 10.1016/j.fuel.2018.03.034

    10. [10]

      JA'FARI M, EBRAHIMI S L, KHOSRAVI-NIKOU M R. Ultrasound-assisted oxidative desulfurization and denitrogenation of liquid hydrocarbon fuels:A critical review[J]. Ultrason Sonochem, 2018,40:955-968. doi: 10.1016/j.ultsonch.2017.09.002

    11. [11]

      HUANG D, WANG Y J, CUI Y C, LUO G S. Direct synthesis of mesoporous TiO2 and its catalytic performance in DBT oxidative desulfurization[J]. Microporous Mesoporous Mater, 2008,116(1):378-385.

    12. [12]

      CAMPOS-MARTIN J M, CAPEL-SANCHEZ M C, PEREZ-PRESAS P, FIERRO J L G. Oxidative processes of desulfurization of liquid fuels[J]. J Chem Technol Biotechnol, 2010,85(7):879-890. doi: 10.1002/jctb.v85:7

    13. [13]

      LIU Zhi-lan, SUN Lan-lan, ZHANG Xiao-li, WANG Bao-hui, CUI Bao-chen. Progress on desulfurization of diesel fuel[J]. Chem Ind Eng Prog, 2007,26(2):212-215. doi: 10.3321/j.issn:1000-6613.2007.02.014

    14. [14]

      BETIHA M A, RABIE A M, AHMED H S, ABDELRAHMAN A A, EL-SHAHAT M F. Oxidative desulfurization using graphene and its composites for fuel containing thiophene and its derivatives:An update review[J]. Egypt J Pet, 2018,27(4):715-730. doi: 10.1016/j.ejpe.2017.10.006

    15. [15]

      GAO Y, TANG P, ZHOU H, ZHANG W, YANG H, YAN N, MA D. Graphene oxide catalyzed ch bond activation:The importance of oxygen functional groups for biaryl construction[J]. Angew Chem Int Ed, 2016,55(9):3124-3128. doi: 10.1002/anie.201510081

    16. [16]

      ZHAO Q, BAI C, ZHANG W, LI Y, ZHANG G, ZHANG F, FAN X. Catalytic epoxidation of olefins with graphene oxide supported copper (Salen) complex[J]. Ind Eng Chem Res, 2014,53(11):4232-4238. doi: 10.1021/ie500017z

    17. [17]

      XU J, XU M, WU J, WU H, ZHANG W H, LI Y X. Graphene oxide immobilized with ionic liquids:Facile preparation and efficient catalysis for solvent-free cycloaddition of CO2 to propylene carbonate[J]. RSC Adv, 2015,5(88):72361-72368. doi: 10.1039/C5RA13533H

    18. [18]

      DIZAJI A K, MORTAHEB H R, MOKHTARANI B. Complete oxidative desulfurization using graphene oxide-based phosphomolybdic acid catalyst:Process optimization by two phase mass balance approach[J]. Chem Eng J, 2018,335:362-372. doi: 10.1016/j.cej.2017.10.129

    19. [19]

      DING Bang-qin, ZHU Bei-bei, LI Xia. Catalytic performance of silicotungstic acid supported on grapene oxide for oxidative desulfurization[J]. Chem Reagents, 2018,40(5):429-436.  

    20. [20]

      LI S, MOMINOU N, WANG Z, LIU L, WANG L. Ultra-deep desulfurization of gasoline with CuW/TiO2-GO through photocatalytic oxidation[J]. Energy Fuels, 2016,30(2):962-967.  

    21. [21]

      ABDI G, ASHOKKUMAR M, ALIZADEH A. Ultrasound-assisted oxidative-adsorptive desulfurization using highly acidic graphene oxide as a catalyst-adsorbent[J]. Fuel, 2017,210:639-645. doi: 10.1016/j.fuel.2017.09.024

    22. [22]

      LIU L, ZHANG Y, TAN W. Ultrasound-assisted oxidation of dibenzothiophene with phosphotungstic acid supported on activated carbon[J]. Ultrason Sonochem, 2014,21(3):970-974. doi: 10.1016/j.ultsonch.2013.10.028

    23. [23]

      FU L, XIA T, ZHENG Y, YANG J, WANG A, WANG Z. Preparation of WO3-reduced graphene oxide nanocomposites with enhanced photocatalytic property[J]. Ceram Int, 2015,41(4):5903-5908. doi: 10.1016/j.ceramint.2015.01.022

    24. [24]

      ZHAO R, LI X, SU J, GAO X. Preparation of WO3/g-C3N4 composites and their application in oxidative desulfurization[J]. Appl Surf Sci, 2017,392:810-816. doi: 10.1016/j.apsusc.2016.08.120

    25. [25]

      LU Y, YIN H, WU H, LIU H, JIANG T, WADA Y. Structural effect of tungsten oxides on selective oxidation of cyclopentene to glutaraldehyde[J]. Catal Commun, 2006,7(11):832-838. doi: 10.1016/j.catcom.2006.03.006

    26. [26]

      YANG Yong-hui, SUN Hong-juan, PENG Tong-jiang. Synthesis and structural characterization of graphene by oxidation reduction[J]. Chin J Inorg Chem, 2010,26(11):2083-2090.  

    27. [27]

      ABDELRAHMAN A A, BETIHA M A, RABIE A M, AHMED H S, ELSHAHAT M F. Removal of refractory organosulfur compounds using an efficient and recyclable {Mo132} nanoball supported graphene oxide[J]. J Mol Liq, 2018,252:121-132. doi: 10.1016/j.molliq.2017.12.124

    28. [28]

      HUANG H, YUE Z, LI G, WANG X, HUANG J, DU Y, YANG P. Ultraviolet-assisted preparation of mesoporous WO3/reduced graphene oxide composites:Superior interfacial contacts and enhanced photocatalysis[J]. J Mater Chem A, 2013,1(47):15110-15116. doi: 10.1039/c3ta13433d

    29. [29]

      TANG L, LUO G, KANG L, ZHU M, DAI B. A novel[J]. Korean J Chem Eng, 2013,30(2):314-320.  

    30. [30]

      MÉNDEZ F J, LLANOS A, ECHEVERRÍA M, JÁUREGUI R, VILLASANA Y, DÍAZ Y, BRITO J L. Mesoporous catalysts based on Keggin-type heteropolyacids supported on MCM-41 and their application in thiophene hydrodesulfurization[J]. Fuel, 2013,110:249-258. doi: 10.1016/j.fuel.2012.11.021

    31. [31]

      DAI B, WU P, ZHU W, CHAO Y, SUN J, XIONG J, LI H. Heterogenization of homogenous oxidative desulfurization reaction on graphene-like boron nitride with a peroxomolybdate ionic liquid[J]. RSC Adv, 2016,6(1):140-147. doi: 10.1039/C5RA23272D

    32. [32]

      ZHANG W, XU K, ZHANG Q, LIU D, WU S, VERPOORT F, SONG X M. Oxidative desulfurization of dibenzothiophene catalyzed by ionic liquid[J]. Ind Eng Chem Res, 2010,49(22):11760-11763. doi: 10.1021/ie100957k

    33. [33]

      MAO Chun-feng, ZHAO Rong-xiang, LI Xiu-ping. Bismuth nitrate as a catalyst for oxidative desulfurization of dibenzothiophene in model oil[J]. Acta Pet Sin:(Pet Process Sect), 2017,33(1):56-63. doi: 10.3969/j.issn.1001-8719.2017.01.008

    34. [34]

      WANG G J, ZHANG J K, LIU Y. Catalytic oxidative desulfurization of benzothiophene with hydrogen peroxide over Fe/AC in a biphasic model diesel-acetonitrile system[J]. Korean J Chem Eng, 2013,30(8):1559-1565. doi: 10.1007/s11814-013-0052-5

    35. [35]

      DUARTE F A, MELLO P A, BIZZI C A, NUNES M A, MOREIRA E M, ALENCAR M S, FLORES É M. Sulfur removal from hydrotreated petroleum fractions using ultrasound-assisted oxidative desulfurization process[J]. Fuel, 2011,90(6):2158-2164. doi: 10.1016/j.fuel.2011.01.030

    36. [36]

      JA'FARI M, EBRAHIMI S L, KHOSRAVI-NIKOU M R. Ultrasound-assisted oxidative desulfurization and denitrogenation of liquid hydrocarbon fuels:A critical review[J]. Ultrason Sonochem, 2018,40:955-968. doi: 10.1016/j.ultsonch.2017.09.002

    37. [37]

      AKBARI A, OMIDKHAH M, DARIAN J T. Investigation of process variables and intensification effects of ultrasound applied in oxidative desulfurization of model diesel over MoO3/Al2O3 catalyst[J]. Ultrason Sonochem, 2014,21(2):692-705. doi: 10.1016/j.ultsonch.2013.10.004

    38. [38]

      LÜ H, LI P, DENG C, REN W, WANG S, LIU P, ZHANG H. Deep catalytic oxidative desulfurization (ODS) of dibenzothiophene (DBT) with oxalate-based deep eutectic solvents (DESs)[J]. Chem Commun, 2015,51(53):10703-10706. doi: 10.1039/C5CC03324A

    39. [39]

      ZHU Y, ZHU M, KANG L, YU F, DAI B. Phosphotungstic acid supported on mesoporous graphitic carbon nitride as catalyst for oxidative desulfurization of fuel[J]. Ind Eng Chem Res, 2015,54(7):2040-2047. doi: 10.1021/ie504372p

    40. [40]

      CEDEÑO-CAERO L, GOMEZ-BERNAL H, FRAUSTRO-CUEVAS A, GUERRA-GOMEZ H D, CUEVAS-GARCIA R. Oxidative desulfurization of synthetic diesel using supported catalysts:Part Ⅲ. Support effect on vanadium-based catalysts[J]. Catal Today, 2008,133:244-254.

    41. [41]

      ZHOU Q, FU S, ZOU M, HE Y, WU Y, WU T. Deep oxidative desulfurization of model oil catalyzed by magnetic MoO3/Fe3O4[J]. RSC Adv, 2015,5(85):69388-69393. doi: 10.1039/C5RA11028A

    42. [42]

      YU G, ZHAO J, SONG D, ASUMANA C, ZHANG X, CHEN X. Deep oxidative desulfurization of diesel fuels by acidic ionic liquids[J]. Ind Eng Chem Res, 2011,50(20):11690-11697. doi: 10.1021/ie200735p

    43. [43]

      AKBARI A, OMIDKHAH M, DARIAN J T. Facilitated and selective oxidation of thiophenic sulfur compounds using MoOx/Al2O3-H2O2 system under ultrasonic irradiation[J]. Ultrason Sonochem, 2015,23:231-237. doi: 10.1016/j.ultsonch.2014.09.002

  • 加载中
    1. [1]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    2. [2]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    3. [3]

      Zhangshu Wang Xin Zhang Jixin Han Xuebing Fang Xiufeng Zhao Zeyu Gu Jinjun Deng . Exploration and Design of Experimental Teaching on Ultrasonic-Enhanced Synergistic Treatment of Ternary Composite Flooding Produced Water. University Chemistry, 2024, 39(5): 116-124. doi: 10.3866/PKU.DXHX202310056

    4. [4]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    5. [5]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    6. [6]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    7. [7]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    8. [8]

      Lisha LEIWei YONGYiting CHENGYibo WANGWenchao HUANGJunhuan ZHAOZhongjie ZHAIYangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202

    9. [9]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    10. [10]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    11. [11]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    12. [12]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    13. [13]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    14. [14]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    15. [15]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    16. [16]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    17. [17]

      Meijin Li Xirong Fu Xue Zheng Yuhan Liu Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027

    18. [18]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    19. [19]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    20. [20]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

Metrics
  • PDF Downloads(6)
  • Abstract views(786)
  • HTML views(105)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return