Citation: ZHANG Hao, ZHU Feng-sen, LI Xiao-dong, WU Ang-jian, BO Zheng, CEN Ke-fa. Rotating gliding arc plasma assisted hydrogen production from methane decomposition in argon[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(02): 192-200. shu

Rotating gliding arc plasma assisted hydrogen production from methane decomposition in argon

  • Corresponding author: LI Xiao-dong, 
  • Received Date: 9 June 2015
    Available Online: 14 September 2015

    Fund Project: 国家自然科学基金(51576174) (51576174)高等学校博士学科点专项科研基金(20120101110099) (20120101110099)中央高校基本科研业务费专项资金(2015FZA4011)项目资助. (2015FZA4011)

  • A kind of rotating gliding arc(RGA) argon plasma co-driven by tangential flow and magnetic field was investigated and used for hydrogen production from methane decomposition.In order to obtain insights into the physical characteristics of the RGA plasma,optical emission spectroscopy(OES) analysis was used to determine the electron temperature and electron density.In addition,the effects of feed flow rate and CH4/Ar ratio on the performance of the methane decomposition process in this RGA plasma were also investigated.Results have shown that,the RGA plasma is a kind of unique plasma between thermal and non-thermal plasma,with electron temperature of 1.0-2.0 eV and electron density of 1015 cm-3.In this system,the CH4 conversion could be 22.1%-70.2% and it increased with the increase of flow rate or CH4/Ar ratio.The H2 selectivity varied from 21.2% to 61.2%,and with the augment of flow rate,the H2 selectivity first varied slightly and then increased.A comparison of different non-thermal plasmas(e.g.,microwave,radio frequency,and dielectric barrier discharge) showed that the RGA plasma could provide a relatively high CH4 conversion and H2 selectivity,as well as a relatively low energy consumption for H2 production,while maintaining a high flow rate(i.e.,processing capacity) of 6-20 L/min.
  • 加载中
    1. [1]

      [1] CHEN F Q,HUANG X Y,CHENG D G,ZHAN X L.Hydrogen production from alcohols and ethers via cold plasma:A review[J].Int J Hydrogen Energy,2014,39(17):9036-9046.

    2. [2]

      [2] PETITPAS G,ROLLIER J D,DARMON A,GONZALEZ AGUILAR J,METKEMEIJER R,FULCHERI L.A comparative study of non-thermal plasma assisted reforming technologies[J].Int J Hydrogen Energy,2007,32(14):2848-2867.

    3. [3]

      [3] LESUEUR H,CZERNICHOWSKI A,CHAPELLE J.Device for generating low-temperature plasmas by formation of sliding electric discharges:France,2639172[P].1998-11-17.

    4. [4]

      [4] MUTAF YARDIMCI O,SAVELIEV A V,FRIDMAN A A,KENNEDY L A.Thermal and nonthermal regimes of gliding arc discharge in air flow[J].J Appl Phys,2000,87(4):1632-1641.

    5. [5]

      [5] FRIDMAN A,NESTER S,KENNEDY L A,SAVELIEV A,MUTAF-YARDIMCI O.Gliding arc gas discharge[J].Prog Energy Combust,1999,25(2):211-231.

    6. [6]

      [6] ZHANG H,DU C M,WU A J,BO Z,YAN J H,LI X D.Rotating gliding arc assisted methane decomposition in nitrogen for hydrogen production[J].Int J Hydrogen Energy,2014,39(24):12620-12635.

    7. [7]

      [7] LEE H,SEKIGUCHI H.Plasma-catalytic hybrid system using spouted bed with a gliding arc discharge:CH4 reforming as a model reaction[J].J Phys D:Appl Phys,2011,44(27):8295-8300.

    8. [8]

      [8] RUEANGJITT N,SREETHAWONG T,CHAVADEJ S,SEKIGUCHI H.Plasma-catalytic reforming of methane in AC microsized gliding arc discharge:Effects of input power,reactor thickness,and catalyst existence[J].Chem Eng J,2009,155(3):874-880.

    9. [9]

      [9] RUEANGJITT N,SREETHAWONG T,CHAVADEJ S,SEKIGUCHI H.Non-oxidative reforming of methane in a mini-gliding arc discharge reactor:Effects of feed methane concentration,feed flow rate,electrode gap distance,residence time,and catalyst distance[J].Plasma Chem Plasma Process,2011,31(4):517-534.

    10. [10]

      [10] INDARTO A,CHOI J W,LEE H,SONG H K.Effect of additive gases on methane conversion using gliding arc discharge[J].Energy,2006,31(14):2986-2995.

    11. [11]

      [11] LEE D H,KIM K T,KANG H S,SONG Y H,PARK J E.NOx reduction strategy by staged combustion with plasma-assisted flame stabilization[J].Energy Fuels,2012,26(7):4284-4290.

    12. [12]

      [12] YU L,TU X,LI X D,WANG Y,CHI Y,YAN J H.Destruction of acenaphthene,fluorene,anthracene and pyrene by a dc gliding arc plasma reactor[J].J Hazard Mater,2010,180(1-3):449-455.

    13. [13]

      [13] YAN J H,PENG Z,LU S Y,DU C M,LI X D,CHEN T,NI M J,CEN K F.Destruction of PCDD/Fs by gliding arc discharges[J].J Environ Sci,2007,19(11):1404-1408.

    14. [14]

      [14] DJEPANG S A,LAMINSI S,NJOYIM-TAMUNGANG E,NGNINTEDEM C,BRISSET J L.Plasma-chemical and photo-catalytic degradation of bromophenol blue[J].Chem Mater Eng,2014,2(1):14-23.

    15. [15]

      [15] ITO Y,SHIKI H,TAKIKAWA H,OOTSUKA T,OKAWA T,YAMANAKA S,USUKI E.Low-temperature sintering of indium tin oxide thin film using split gliding arc plasma[J].Jpn J Appl Phys,2008,47(8S2):6956.

    16. [16]

      [16] KIM H S,LEE D H,FRIDMAN A,CHO Y I.Residual effects and energy cost of gliding arc discharge treatment on the inactivation of Escherichia coli in water[J].Int J Heat Mass Transfer,2014,77(0):1075-1083.

    17. [17]

      [17] LEE D H,KIM K T,CHA M S,SONG Y H.Optimization scheme of a rotating gliding arc reactor for partial oxidation of methane[J].Proc Combust Inst,2007,31(2):3343-3351.

    18. [18]

      [18] ZHANG H,LI X D,ZHANG Y Q,CHEN T,YAN J H,DU C M.Rotating gliding arc codriven by magnetic field and tangential flow[J].IEEE Trans Plasma Sci,2012,40(12):3493-3498.

    19. [19]

      [19] JIMÉNEZ M,RINCÓN R,MARINAS A,CALZADA M D.Hydrogen production from ethanol decomposition by a microwave plasma:Influence of the plasma gas flow[J].Int J Hydrogen Energy,2013,38(21):8708-8719.

    20. [20]

      [20] 屠昕.用于危险废弃物处理的直流等离子体射流特性研究[D].杭州:浙江大学,2007.(TU Xin.Characterization of DC plasma jets aimed at the treatment of hazardous waste[D].Hangzhou:Zhejiang University,2007.)

    21. [21]

      [21] NIST Atomic Spectra Database[EB/OL].http://www.nist.gov/pml/data/asd.cfm.Html,2015-10-1.

    22. [22]

      [22] YUBERO C,DIMITRIJEVIC M S,GARCÍA M C,CALZADA M D.Using the van der Waals broadening of the spectral atomic lines to measure the gas temperature of an argon microwave plasma at atmospheric pressure[J].Spectrochim Acta,Part B,2007,62(2):169-176.

    23. [23]

      [23] GRIEM H R.Plasma spectroscopy[M].New York:McGraw-Hill,1964:580.

    24. [24]

      [24] 齐玉妍.光谱线型法研究介质阻挡放电等离子体参量[D]:保定:河北大学,2008.(QI Yu-yan.Investigation of plasma parameters in dielectric barrier discharge by spectral line profiles[D].Baoding:Hebei University,2008.)

    25. [25]

      [25] GANGOLI S P.Experimental and modeling study of warm plasmas and their applications[D].Philadelphia:Drexel University,2007.

    26. [26]

      [26] HUDDLESTONE R H,LEONARD S L.Plasma diagnostic techniques[M].New York:Academic Press,1965:201-264.

    27. [27]

      [27] CRISTOFORETTI G,DE GIACOMO A,DELL'AGLIOC M,LEGNAIOLI S,TOGNONI E,PALLESCHI V,OMENETTO N.Local thermodynamic equilibrium in laser-induced breakdown spectroscopy:Beyond the McWhirter criterion[J].Spectrochim Acta,Part B,2010,65(1):86-95.

    28. [28]

      [28] 张浩,李晓东,张云卿,张明,杜长明,严建华.氮气气氛下旋转滑动弧重整甲烷制氢实验研究[J].工程热物理学报,2013,34(4):787-790.(ZHANG Hao,LI Xiao-dong,ZHANG Yun-qing,ZHANG Ming,DU Chang-ming,YAN Jian-hua.Experimental research of hydrogen production from methane reforming in nitrogen using a rotating gliding arc reactor[J].J Eng Thermophys,2013,34(4):787-790.)

    29. [29]

      [29] ZHANG J Q,YANG Y J,ZHANG J S,LIU Q,TAN K R.Non-oxidative coupling of methane to C2 hydrocarbons under above-atmospheric pressure using pulsed microwave plasma[J].Energy Fuels,2002,16(3):687-693.

    30. [30]

      [30] PORNMAI K,JINDANIN A,SEKIGUCHI H,CHAVADEJ S.Synthesis gas production from CO2-Containing natural gas by combined steam reforming and partial oxidation in an AC gliding arc discharge[J].Plasma Chem Plasma Process,2012,32(4):723-742.

    31. [31]

      [31] GARDU O M,PACHECO M,PACHECO J,VALDIVIA R,SANTANA A,LEFORT B,ESTRADA N,RIVERA-RODRÍGUEZ C.Hydrogen production from methane conversion in a gliding arc[J].J Renew Sust Energy,2012,4(2):133-137.

    32. [32]

      [32] JASIńSKI M,DORS M,MIZERACZYK J.Production of hydrogen via methane reforming using atmospheric pressure microwave plasma[J].J Power Sources,2008,181(1):41-45.

    33. [33]

      [33] ONOE K,FUJIE A,YAMAGUCHI T,HATANO Y.Selective synthesis of acetylene from methane by microwave plasma reactions[J].Fuel,1997,76(3):281-282.

    34. [34]

      [34] HSIEH L T,LEE W J,CHEN C Y,CHANG M B,CHANG H C.Converting methane by using an RF plasma reactor[J].Plasma Chem Plasma Process,1998,18(2):215-239.

    35. [35]

      [35] AGHAMIR F M,MATIN N S,JALILI A H,ESFARAYENI M H,KHODAGHOLI M A,AHMADI R.Conversion of methane to methanol in an ac dielectric barrier discharge[J].Plasma Sources Sci Technol,2004,13(4):707-711.

    36. [36]

      [36] KADO S,SEKINE Y,NOZAKI T,OKAZAKI K.Diagnosis of atmospheric pressure low temperature plasma and application to high efficient methane conversion[J].Catal Today,2004,89(1):47-55.

    37. [37]

      [37] LI X S,ZHU A M,WANG K J,XU Y,SONG Z M.Methane conversion to C2 hydrocarbons and hydrogen in atmospheric non-thermal plasmas generated by different electric discharge techniques[J].Catal Today,2004,98(4):617-624.

    38. [38]

      [38] GUTSOL A,RABINOVICH A,FRIDMAN A.Combustion-assisted plasma in fuel conversion[J].J Phys D:Appl Phys,2011,44:274001.

    39. [39]

      [39] FRIDMAN A,CHIROKOV A,GUTSOL A.Non-thermal atmospheric pressure discharges[J].J Phys D:Appl Phys,2005,38(2):R1-R24.

  • 加载中
    1. [1]

      Xin Hua Songqin Liu . Research on Teaching Practice of Spectral Analytical Chemistry Based on Thematic Discussion. University Chemistry, 2025, 40(7): 106-111. doi: 10.12461/PKU.DXHX202408043

    2. [2]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    3. [3]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    4. [4]

      Qin HuLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of Electron Bridge and Activation of MoS2 Inert Basal Planes by Ni Doping for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-0. doi: 10.3866/PKU.WHXB202406024

    5. [5]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    6. [6]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    7. [7]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    8. [8]

      Kexin DongChuqi ShenRuyu YanYanping LiuChunqiang ZhuangShijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-0. doi: 10.3866/PKU.WHXB202310013

    9. [9]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    10. [10]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    11. [11]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    12. [12]

      Tianlong Zhang Jiajun Zhou Hongsheng Tang Xiaohui Ning Yan Li Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049

    13. [13]

      Yang Wang Yunpeng Fu Xiaoji Liu Guotao Zhang Guobin Li Wanqiang Liu Jinglun Wang . Structural Analysis of Nitrile Solutions Based on Infrared Spectroscopy Probes. University Chemistry, 2025, 40(4): 367-374. doi: 10.12461/PKU.DXHX202406113

    14. [14]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    15. [15]

      Shi-Yu LuWenzhao DouJun ZhangLing WangChunjie WuHuan YiRong WangMeng Jin . Amorphous-Crystalline Interfaces Coupling of CrS/CoS2 Few-Layer Heterojunction with Optimized Crystallinity Boosted for Water-Splitting and Methanol-Assisted Energy-Saving Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(8): 2308024-0. doi: 10.3866/PKU.WHXB202308024

    16. [16]

      Xingyuan Lu Yutao Yao Junjing Gu Peifeng Su . Energy Decomposition Analysis and Its Application in the Many-Body Effect of Water Clusters. University Chemistry, 2025, 40(3): 100-107. doi: 10.12461/PKU.DXHX202405074

    17. [17]

      Zhexue Lu Ping Wu Huihui Li Libai Wen . 四“味”一体的无机及分析化学课程思政. University Chemistry, 2025, 40(6): 333-340. doi: 10.12461/PKU.DXHX202405196

    18. [18]

      Yufan ZHAOJinglin YOUShixiang WANGGuopeng LIUXiang XIAYingfang XIEMeiqin SHENGFeiyan XUKai TANGLiming LU . Raman spectroscopic quantitative study of the melt microstructure in binary Li2O-GeO2 functional crystals. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1533-1544. doi: 10.11862/CJIC.20250063

    19. [19]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    20. [20]

      Jiaxuan ZuoKun ZhangJing WangXifei Li . Nucleation Regulation and Mechanism of Precursors for Nickel Cobalt Manganese-based Cathode Materials in Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100009-0. doi: 10.3866/PKU.WHXB202404042

Metrics
  • PDF Downloads(0)
  • Abstract views(1093)
  • HTML views(158)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return