Citation: Luo Shuchang, Liu Qiuqiu, Zheng Pengfei, Yin Jun, Liu Xiangyu. Effects of Solvents on the Magnetic Properties of Azido-Cu(Ⅱ) Complexes with 4-Azabenzoic Acid Coligands:A Theoretical Exploration[J]. Chemistry, ;2020, 83(6): 569-575. shu

Effects of Solvents on the Magnetic Properties of Azido-Cu(Ⅱ) Complexes with 4-Azabenzoic Acid Coligands:A Theoretical Exploration

  • Received Date: 31 October 2019
    Accepted Date: 22 February 2020

Figures(6)

  • The magnetic properties of a azido-Cu(Ⅱ) complex[Cu2(4-aba)3(N3)3(CH3OH)3]2- were studied by using the DFT-BS method under different density functional methods and basis sets. The results showed that the magnetic coupling constant between paramagnetic centers calculated at the B2PLYP/TZVP level is 33.48cm-1, which agrees well with the experimental value (33.80 cm-1). Accordingly, it could describe the magnetic properties of the azido-Cu(Ⅱ) complexes. The molecular magnetic orbital of the titled complex are mainly contributed by 3dx2-y2 orbitals of the paramagnetic center Cu(1)/Cu(2), π molecular orbitals of N3- ion and 4-azabenzoic acid and p orbital of oxygen atom in the methanol. As results, with the increasing of electrophobic effect of R-groups solvent, the contribution of antiferromagnetic interaction decreases, whereas the values of the magnetic coupling constant increases.
  • 加载中
    1. [1]

      Miller J S, Drillon M. Magnetism: Molecules to Materials, Wiley-VCH, Weinheim, 2002.

    2. [2]

      Gatteschi D, Sessoli R, Villain J. Molecular Nanomagnets, Oxford University Press, Oxford, 2006.

    3. [3]

      Yue Q, Gao E Q. Coord. Chem. Rev., 2019, 382: 1~31. 

    4. [4]

      Ma Y, Wen Y Q, Zhang J Y, et al. Dalton Transac., 2010, 39(7): 1846~1854. 

    5. [5]

      Mukherjee S, Mukherjee P S. Acc. Chem. Res., 2013, 46(11): 2556~2566. 

    6. [6]

      Ferrando-Soria J, Vallejo J, Castellano M, et al. Coord. Chem. Rev., 2017, 339: 17~103. 

    7. [7]

      Neese F. Coord. Chem. Rev., 2009, 253(5-6): 526~563. 

    8. [8]

      Liu C M, Gao S, Zhang D Q, et al. Angew. Chem. Int. Ed., 2004, 43(8): 990~994. 

    9. [9]

      Wernsdorfer W, Aliaga-Alcalde N, Hendrickson D N, et al. Nature, 2002, 416: 406~409. 

    10. [10]

      Zhao J P, Xie Y B, Li J R, et al. Dalton Transac., 2016, 45(4): 1514~1524. 

    11. [11]

      Zhao J P, Han S D, Liu F C. Inorg. Chem., 2019, 58(2): 1184~1190. 

    12. [12]

      Isabel C, María L C, Consuelo Y, et al. Polyhedron, 2019, 169: 66~77. 

    13. [13]

      Liu X Y, Ma X F, Yang J H, et al. Dalton Transac., 2019, 48(30): 11268~11277. 

    14. [14]

      Cen P P, Yuan W Z, Luo S C, et al. New J. Chem., 2019, 43(2): 601~608. 

    15. [15]

      Liu X Y, Cen P P, Li F F, et al. RSC Adv., 2016, 6(98): 96103~96108. 

    16. [16]

      Liu X Y, Li F F, Ma X F, et al. Dalton Transac., 2017, 46(4): 1207~1217. 

    17. [17]

      Ma X H, Wu Y W, Cen P P, et al. New J. Chem., 2017, 41(18): 9631~9638. 

    18. [18]

      Liu X Y, Chen S P, Grancha T, et al. Dalton Transac., 2014, 43(41): 15359~15366. 

    19. [19]

      Yang L, Zhang S, Liu X Y, et al. CrystEngComm, 2014, 16(20): 4194~4201. 

    20. [20]

      Liu X Y, Ma X H, Cen P P, et al. Dalton Transac., 2017, 46(23): 7556~7566. 

    21. [21]

      Luo S C, Mei H, Sun X Y, et al. J. Mol. Graph. Model., 2020, 97: 107562. 

    22. [22]

      Woodruff D N, Winpenny R E P, Layfield R A. Chem. Rev., 2013, 113(7): 5110~5148. 

    23. [23]

      Ferreira D E C, Almeida W B D, Neves A, et al. Comput. Theor. Chem., 2012, 979: 89~95. 

    24. [24]

      Escuer A, Esteban J, Perlepes S P, et al. Coord. Chem. Rev. 2014, 275: 87~129.

    25. [25]

      Yin B, Li J L, Bai H C, et al. Phys. Chem. Chem. Phys., 2012, 14(3): 1121~1130. 

    26. [26]

      Rigamonti L, Forni A, Sironi M, et al. polyhedron, 2018, 145: 22~34. 

    27. [27]

    28. [28]

      Bencini A, Gatteschi D. J. Am. Chem. Soc., 1980, 108(19): 5763~5771.

    29. [29]

      Neese F, ORCA-an ab initio, Density Functional and Semiempirical Program Package, 4.2.0, University of Bonn, Bonn, Germany, 2019, http://www.thch.unibonn.de/tc/orca/.

    30. [30]

      Neese F. Wiley Interdiscip. Rev.: Comput. Mol. Sci., 2012, 2(1): 73~78. 

    31. [31]

      Neese F. Wiley Interdiscip. Rev.: Comput. Mol. Sci., 2018, 8(1): e1327.

    32. [32]

      Humphrey W, Dalke A, Schulten K. J. Mol. Graph. Model, 1996, 14(1): 33~38. 

    33. [33]

      Grimme S. J. Chem. Phys., 2006, 124(3): 034108. 

    34. [34]

      Su Q J, Li S H, Wang L, et al. Inorg. Chem. Commun., 2010, 13(10): 1210~1212. 

    35. [35]

    36. [36]

    37. [37]

      Bian J Y, Chang Y F, Zhang J P. J. Phys. Chem. A, 2008, 112(14): 3186~3191. 

    38. [38]

      Kahn O, Briat B J. Chem. Soc. Faraday Transac., 1976, 72(2): 268~281.

    39. [39]

      Girerd J J, Journaux Y, Kahn O. Chem. Phys. Lett., 1981, 82(3): 534~538. 

  • 加载中
    1. [1]

      Hao ChenDongyue YangGang HuangXinbo Zhang . Progress on Liquid Organic Electrolytes of Li-O2 Batteries. Acta Physico-Chimica Sinica, 2024, 40(7): 2305059-0. doi: 10.3866/PKU.WHXB202305059

    2. [2]

      Jinrong Bao Jinglin Zhang Wenxian Li Xiaowei Zhu . 苯甲酸稀土配合物的制备及性能表征——基于应用化学专业人才培养的综合化学实验案例分析. University Chemistry, 2025, 40(8): 218-224. doi: 10.12461/PKU.DXHX202409142

    3. [3]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    4. [4]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    5. [5]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    6. [6]

      Qianping Li Hua Guan Changfeng Wan Yonghai Song Jianwen Jiang . 大学有机化学复习课项目式教学——以“液晶化合物4-正戊基苯甲酸-4′-正戊基苯酯的合成路线设计与产品制备”为例. University Chemistry, 2025, 40(8): 100-116. doi: 10.12461/PKU.DXHX202410070

    7. [7]

      Qiaowen CHANGKe ZHANGGuangying HUANGNuonan LIWeiping LIUFuquan BAICaixian YANYangyang FENGChuan ZUO . Syntheses, structures, and photo-physical properties of iridium phosphorescent complexes with phenylpyridine derivatives bearing different substituting groups. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 235-244. doi: 10.11862/CJIC.20240311

    8. [8]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    9. [9]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    10. [10]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    11. [11]

      Chengshan Yuan Xiaolong Li Xiuping Yang Xiangfeng Shao Zitong Liu Xiaolei Wang Yongwen Shen . Standardized Operational Guidelines for Mixed-Solvent Recrystallization in Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 122-127. doi: 10.12461/PKU.DXHX202504073

    12. [12]

      Lifang HEWenjie TANGYaoze LUOMingsheng LIANGJianxin TANGYuxuan WUFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two dialkyltin complexes constructed based on 2, 2′-bipyridin-6, 6′-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1601-1609. doi: 10.11862/CJIC.20250012

    13. [13]

      Xin FengKexin GuoChunguang JiaBowen LiuSuqin CiJunxiang ChenZhenhai Wen . Hydrogen Generation Coupling with High-Selectivity Electrocatalytic Glycerol Valorization into Formate in an Acid-Alkali Dual-Electrolyte Flow Electrolyzer. Acta Physico-Chimica Sinica, 2024, 40(5): 2303050-0. doi: 10.3866/PKU.WHXB202303050

    14. [14]

      Nengmin ZHUWenhao ZHUXiaoyao YINSongzhi ZHENGHao LIZeyuan WANGWenhao WEIXuanheng CHENWeihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419

    15. [15]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

    16. [16]

      Ying Xiong Guangao Yu Lin Wu Qingwen Liu Houjin Li Shuanglian Cai Zhanxiang Liu Xingwen Sun Yuan Zheng Jie Han Xin Du Chengshan Yuan Qihan Zhang Jianrong Zhang Shuyong Zhang . Basic Operations and Specification Suggestions for Determination of Physical Constants of Organic Compounds. University Chemistry, 2025, 40(5): 106-121. doi: 10.12461/PKU.DXHX202503079

    17. [17]

      Jiandong LiuXin LiDaxiong WuHuaping WangJunda HuangJianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039

    18. [18]

      Yanglin JiangMingqing ChenMin LiangYige YaoYan ZhangPeng WangJianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 2309027-0. doi: 10.3866/PKU.WHXB202309027

    19. [19]

      Shuang CaoBo ZhongChuanbiao BieBei ChengFeiyan Xu . Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016-0. doi: 10.3866/PKU.WHXB202307016

    20. [20]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

Metrics
  • PDF Downloads(7)
  • Abstract views(702)
  • HTML views(180)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return