Citation: ZHAO Hong-yu, LI Yu-huan, SONG Qiang, LÜ Jun-xin, SHU Yuan-feng, WANG Zi-min, YAN Jie, ZENG Ming, SHU Xin-qian. Effect of additive iron ore on pyrolysis characteristics of a low rank coal from Hami[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(02): 154-161. shu

Effect of additive iron ore on pyrolysis characteristics of a low rank coal from Hami

  • Corresponding author: SHU Xin-qian, 
  • Received Date: 18 September 2015
    Available Online: 13 November 2015

    Fund Project: 国家自然科学基金(51074170) (51074170)新疆维吾尔族自治区科技攻关计划(201532108) (201532108)国土资源部煤炭资源勘查与综合利用重点实验室开放研究课题(KF2015-3)项目资助. (KF2015-3)

  • The effect of iron ore on pyrolysis characteristics of a low rank coal from Hami was explored.By means of thermogravimetric analyzer(TGA),fixed bed reactor,fourier transform infrared spectroscopy(FT-IR),gas chromatograph(GC) and gas chromatography-mass spectrometer(GC-MS),the changes of pyrolysis reactivity,products distribution,the functional groups in the tar and the composition of tar of three coal samples were investigated and analyzed.The results show that when the pyrolysis temperature increases from room temperature to 150℃,the peak of weight loss rate of HM-CT and HM-JT gradually moves to high temperature.When the pyrolysis temperature is more than 450℃,the catalytic effect of different iron ores on coal pyrolysis is more obvious and in the order of specularite> the inherent minerals in HM> hematite.When the two kinds of iron ores added are up to 20%,there is a higher pyrolysis tar and gas yield.The tar yield is 7.88% for HM-JT coal sample and the yield of H2,CH4,CO2 and CO increases by 4.27%,3.76%,4.39% and 3.61%,respectively,compared with HM coal.For HM-CT coal sample,the tar catalytic cracking is influenced by the additive amount of iron ore.As the additive amount of specularite and hematite is increasing to 20%,the yield of tar decreases gradually,while the light tar yield rises to 6.37% and 5.34%,respectively for two iron ores,and the light tar fraction increases to 58.48% and 56.22%,respectively.Besides,the removal of oxygen in tar reaches to 43.16% and 36.89%,respectively.With the addition of iron ore,the relative content of m/p-xylene in tar decreases from 4.32% to 3.78% and 3.93%,respectively for two iron ores,and the relative content of toluene increases from 1.11% to 1.32% and 1.45%,respectively.The methyl substituents of o-cresol and m/p-xylenol molecules in tar are removed to produce phenol or cresol,and the demethylation for benzene series and phenolic compounds in tar on the specularite is stronger than that on the hematite.
  • 加载中
    1. [1]

      [1] GE H J,SHEN L H,GU H M,SONG T,JIANG S X.Combustion performance and sodium transformation of high-sodium ZhunDong coal during chemical looping combustion with hematite as oxygen carrier[J].Fuel,2015,159:107-117.

    2. [2]

      [2] HAN J Z,WANG X D,YUE J R,GAO S Q,XU G W.Catalytic upgrading of coal pyrolysis tar over char-based catalysts[J].Fuel Process Technol,2014,122(6):98-106.

    3. [3]

      [3] DING L,ZHOU Z J,GUO Q H,LIN S J,YU G S.Gas evolution characteristics during pyrolysis and catalytic pyrolysis of coals by TG-MS and in a high-frequency furnace[J].Fuel,2015,154:222-232.

    4. [4]

      [4] 公旭中,郭占成,王志.Fe2O3对高变质程度脱灰煤热解反应性与半焦结构的影响[J].化工学报,2009,60(9):2321-2326.(GONG Xu-zhong,GUO Zhan-cheng,WANG Zhi.Effects of Fe2O3 on py rolysis reactivity of demineralizedhigher rank coal and its char structure[J].Chem Ind Eng(China),2009,60(9):2321-2326.)

    5. [5]

      [5] 赵洪宇,任善普,贾晋炜,付兴民,李子君,梁新星,阎杰,曾鸣,舒新前.钙、镍离子3种不同负载方式对褐煤热解-气化特性影响[J].煤炭学报,2015,40(7):1660-1669.(ZHAO Hong-yu,REN Shan-pu,JIA Jin-wei,FU Xing-min,LI Zi-jun,LIANG Xin-xing,YAN Jie,ZENG Ming,SHU Xin-qian.Effects of calcium and nickel ions by three different load methods onpyrolysis and gasification characteristics of lignite[J].J China Coal Soc,2015,40(7):1660-1669.)

    6. [6]

      [6] LI S,CHEN J S,HAO T,LIANG W B,LIU X T,SUN M,MA X X.Pyrolysis of Huang Tu Miao coal over faujasite zeolite and supported transition metal catalysts[J].J Anal Appl Pyrolysis,2013,102(7):161-169.

    7. [7]

      [7] JIANG H F,SONG L H,CHENG Z Q,CHEN J,ZHANG L,ZHANG M Y,HU M J,LI J M,LI J F.Influence of pyrolysis condition and transition metal salt on the product yield and characterization via Huadian oil shale pyrolysis[J].J Anal Appl Pyrolysis,2015,112:230-236.

    8. [8]

      [8] TSUBOUCHI N,OHTSUKA Y.Nitrogen chemistry in coal pyrolysis:Catalytic roles of metal cations in secondary reactions of volatile nitrogen and char nitrogen[J].Fuel Process Technol,2008,89(4):379-390.

    9. [9]

      [9] 洪冰清,战书鹏,王兴军,王辅臣,于广锁.不同金属化合物催化呼和浩特煤加氢气化实验研究[J].燃料化学学报,2012,40(7):782-789.(HONG Bing-qing,ZHAN Shu-peng,WANG Xing-jun,WANG Fu-chen,YU Guang-suo.Experimental study on Hohhot coalhydrogasification catalysed by different metal compounds[J].J Fuel Chem Technol,2012,40(7):782-789.)

    10. [10]

      [10] 胡俊豪,黎阳,杨海平,杨晴,邵敬爱,王贤华,陈汉平.煤热解过程中含氮产物的析出及金属离子的催化特性研究[J].燃料化学学报,2014,42(8):913-921.(HU Jun-hao,LI Yang,YANG Hai-ping,YANG Qing,SHAO Jing-ai,WANG Xian-hua,CHEN Han-ping.Release of nitrogenous products andthe catalytic characteristics of metal ions during coal pyrolysis[J].J Fuel Chem Technol,2014,42(8):913-921.)

    11. [11]

      [11] WANG W L,REN X Y,LI L F,CHANG J M,CAI L P,GENG J.Catalytic effect of metal chlorides on analytical pyrolysis of alkali lignin[J].Fuel Process Technol,2015,134:345-351.

    12. [12]

      [12] DING L,ZHOU Z J,GUO Q H,HUO W,YU G S.Catalytic effects of Na2CO3 additive on coal pyrolysis and gasification[J].Fuel,2015,142:134-144.

    13. [13]

      [13] KIM S,CHUN D,RHIM Y,LIM J,KIM S,CHOI H,LEE S,YOO J.Catalytic reforming of toluene using a nickel ion-exchanged coal catalyst[J].Int J Hydrogen Energy,2015,40(35):11855-11862.

    14. [14]

      [14] XU C B,TSUBOUCHI N,HASHIMOTO H,OHTSUKA Y.Catalytic decomposition of ammonia gas with metal cations present naturally in low rank coals[J].Fuel,2005,84(14/15):1957-1967.

    15. [15]

      [15] WANG F J,ZHANG S,CHEN Z D,LIU C,WANG Y G.Tar reforming using char as catalyst during pyrolysis and gasification of Shengli brown coal[J].J Anal Appl Pyrolysis,2014,105(5):269-275.

    16. [16]

      [16] 惠贺龙,付兴民,王小华,韦云钊,贾晋炜,舒新前.洗选对煤结构及其热解特性的影响[J].中国电机工程学报,2013,33(23):68-74.(HUI He-long,FU Xing-min,WANG Xiao-hua,WEI Yun-zhao,JIA Jin-wei,SHU Xin-qian.Effect of washing process on the structure and pyrolysis characteristics of coal[J].Proc CSEE,2013,33(23):68-74.)

    17. [17]

      [17] 赵洪宇,任善普,贾晋炜,付兴民,李子君,鲁明元,曾鸣,舒新前.褐煤经四氢化萘处理后的结构及热解-气化特性分析[J].化工学报,2015,66(10):4193-4201.(ZHAO Hong-yu,REN Shan-pu,JIA Jin-wei,FU Xing-min,LI Zi-jun,LU Ming-yuan,ZENG Ming,SHU Xin-qian.Analysis of structure and pyrolysis and gasification characteristics of lignite after tetrahydronaphthalene treatment[J].Chem Ind Eng(China),2015,66(10):4193-4201.)

    18. [18]

      [18] SHI L,LIU Q Y,GUO X J,HE W J,LIU Z Y.Pyrolysis of coal in TGA:Extent of volatile condensation in crucible[J].Fuel Process Technol,2014,121(5):91-95.

    19. [19]

      [19] SHEN Y F,CHEN M D,SUN T H,JIA J P.Catalytic reforming of pyrolysis tar over metallic nickel nanoparticles embedded in pyrochar[J].Fuel,2015,159:570-579.

    20. [20]

      [20] ADRADOS A,LOPEZ-Urionabarrenechea A,SOLAR J,REQUIES J,DE MARCO I,CAMBRA J.F.Upgrading of pyrolysis vapours from biomass carbonization[J].J Anal Appl Pyrolysis,2013,103(23):293-299.

    21. [21]

      [21] ZHANG X D,SUN L Z,CHEN L,XIE X P,ZHAO B F,SI H Y,MENG G F.Comparison of catalytic upgrading of biomass fast pyrolysis vapors over CaO and Fe(III)/CaO catalysts[J].J Anal Appl Pyrolysis,2014,108(7):35-40.

    22. [22]

      [22] BAI Y H,YAN L J,LI G L,ZHAO R F,LI F.Effects of demineralization on phenols distribution and formation duringcoal pyrolysis[J].Fuel,2014,134(9):368-374.

    23. [23]

      [23] SARVARAMINI A,LARACHI F.Catalytic oxygenless steam cracking of syngas-containing benzene model tar compound over natural Fe-bearing silicate minerals[J].Fuel,2012,97:741-750.

  • 加载中
    1. [1]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    2. [2]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    3. [3]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    4. [4]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    5. [5]

      Hongxia Yan Rui Wu Weixu Feng Yan Zhao Yi Yan . Innovation Inspired by Classical Chemistry: Luminescent Hyperbranched Polysiloxanes. University Chemistry, 2025, 40(4): 154-159. doi: 10.12461/PKU.DXHX202409010

    6. [6]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    7. [7]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    8. [8]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    9. [9]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    10. [10]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    11. [11]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    12. [12]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    13. [13]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    14. [14]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    15. [15]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    16. [16]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    17. [17]

      Pengcheng Yan Peng Wang Jing Huang Zhao Mo Li Xu Yun Chen Yu Zhang Zhichong Qi Hui Xu Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-. doi: 10.3866/PKU.WHXB202309047

    18. [18]

      Yuan GAOYiming LIUChunhui WANGZhe HANChaoyue FANJie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271

    19. [19]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    20. [20]

      Yadan Luo Hao Zheng Xin Li Fengmin Li Hua Tang Xilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052

Metrics
  • PDF Downloads(0)
  • Abstract views(485)
  • HTML views(36)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return