Citation: WANG Qing, YANG Qian-kun, XU Xiang-cheng, CUI Da, ZHANG Hong-xi, WANG Yi-fan. Application of FLASHCHAIN model in pyrolysis of Wangqing oil shale[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(02): 138-145. shu

Application of FLASHCHAIN model in pyrolysis of Wangqing oil shale

  • Corresponding author: WANG Qing, 
  • Received Date: 2 September 2015
    Available Online: 19 October 2015

    Fund Project: 国家自然科学基金(51276034)项目资助. (51276034)

  • The carbon atom chemical structure of three Wangqing oil shales was characterized by 13C-NMR techniques,and twelve important parameters of the carbon skeleton structure were obtained.Thermogravimetric-Fourier transform infrared spectroscopy(TG-FTIR) tests were used to obtain the formation of light gases during pyrolysis at 50℃/min and the final temperature of 600℃.The FLASHCHAIN model,which was established based on the structure of fuel,was employed to simulate the evolution of pyrolysis products and compared with the experimental tests.The results show that the model has a good simulation below 520℃,some errors occur above 520℃ due to the influence of secondary pyrolysis reactions and decomposition of minerals in the shale.The errors increase gradually with the increasing pyrolysis temperature.
  • 加载中
    1. [1]

      [1] 刘招君,柳蓉.中国油页岩特征及开发利用前景分析[J].地学前缘,2005,12(3):315-322.(LIU Zhao-jun,LIU Rong.Oil shale resource state and evaluating system[J].Earth Science Frontiers,2005,12(3):315-323.)

    2. [2]

      [2] HOU X L.Prospect of oil shale and shale oil industry.Proceedings international conference on oil shale oil[M].Beijing:Chemical Industry Press,1988:7-15.

    3. [3]

      [3] QIAN J L,YIN L.Oil shale-petroleum alternative[M].Beijing:China Petrochemical Press,2008:30-34.

    4. [4]

      [4] NIKSA S.FLASHCHAIN theory for rapid coal devolatilization.1.Formulation[J].Energy Fuels,1991,5(5):647-665.

    5. [5]

      [5] NIKSA S.FLASHCHAIN theory for rapid coal devolatilization.2.Impact of operating conditions[J].Energy Fuels,1991,5(5):665-673.

    6. [6]

      [6] NIKSA S.FLASHCHAIN theory for rapid coal devolatilization.3.Modeling the Behavior of Various Coals[J].Energy Fuels,1991,5(5):673-683.

    7. [7]

      [7] NIKSA S.FLASHCHAIN theory for rapid coal devolatilization.4.Predicting ultimate yields from ultimate analyses alone[J].Energy Fuels,1994,8(3):659-670.

    8. [8]

      [8] NIKSA S.FLASHCHAIN Theory for rapid coal devolatilization.5.Interpredicting rates of devolatilization for various coal types and operating conditions[J].Energy Fuels,1994,8(3):671-679.

    9. [9]

      [9] NIKSA S.FLASHCHAIN theory for rapid coal devolatilization.6.Predicting the evolution of fuel nitrogen from various coals[J].Energy Fuels,1995,9(3):467-478.

    10. [10]

      [10] NIKSA S.FLASHCHAIN theory for rapid coal devolatilization.7.Predicting the release of oxygen species from various coals[J].Energy Fuels,1996,10(1):173-187.

    11. [11]

      [11] SOLOMON P R,HAMBIEN D G,CARANGRLO R M.General model of coal devolatilization[J].Energy Fuels,1988,2(4):405-422.

    12. [12]

      [12] GRANT D M,PUGMIRE R J,FLETCHER T H.Chemical model of coal devolatilization using percolation lattice statistics[J].Energy Fuels,1989,3(2):175-186.

    13. [13]

      [13] FLETCHER T H,KERSTEIN A R,PUGMIRE R J.Chemical percolation model for devolatilization.2.Temperature and heating rate effects on product yields[J].Energy Fuels,1990,4(1):54-60.

    14. [14]

      [14] THOMAS FLETCHER.Chemical percolation model for devolatilization[J].Energy Fuels,1992,6(1):414-431.

    15. [15]

      [15] JUPUDI R S,ZAMANSKY V,FLETCHER T H.Prediction of light gas composition in coal devolatilization[J].Energy Fuels,2009,23(6):3063-3067.

    16. [16]

      [16] NIKSA S.Predicting the rapid devolatilization of diverse forms of biomass with bio-FLASHCHAIN[J].Proc Combust Inst,2000,28(2):2727-2733.

    17. [17]

      [17] CHEN Y,CHARPENAY S,JENSEN A.Modeling of biomass pyrolysis kinetics[J].Symp(Int) Combust,1998,27(1):1327-1334.

    18. [18]

      [18] FLETCHER T H,HARLAND R,WEBSTER J.Prediction of tar and light gas during pyrolysis of black liquor and biomass[J].Energy Fuels,2012,26(6):3381-3387.

    19. [19]

      [19] DOMINIC B.An advanced model of coal devolatilization based on chemical structure[D].Provo:Brigham Young University,1999:39-40.

    20. [20]

      [20] 秦匡宗,劳永新.茂名和抚顺油页岩组成结构的研究I.有机质的芳碳结构[J].燃料化学学报,1985,13(2):133-140.(QIN Kuang-zong,LAO Yong-xin.Investigation on the constitution and structure of Maoming and Fushun oil shale I.The structural components of the organic matter[J].J Fuel Chem Technol,1985,13(2):133-140.)

    21. [21]

      [21] TONG J,HAN X,WANG S.Evaluation of structural characteristics of huadian oil shale kerogen using direct techniques(Solid-State 13C-NMR,XPS,FT-IR and XRD)[J].Energy Fuels,2011,25(9):4006-4013.

    22. [22]

      [22] SOLUM M S,PUGMIRE R J,GRANT D M.13C solid-state NMR argonne premium coals[J].Energy Fuels,1989,3(2):187-193.

  • 加载中
    1. [1]

      Yu XiongLi-Jun HuJian-Guo SongDi ZhangYi-Shuang PengXiao-Jun HuangJian HongBin ZhuWen-Cai YeYing Wang . Structure elucidation of plumerubradins A–C: Correlations between 1H NMR signal patterns and structural information of [2+2]-type cyclobutane derivatives. Chinese Chemical Letters, 2025, 36(5): 110149-. doi: 10.1016/j.cclet.2024.110149

    2. [2]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    3. [3]

      Yecang Tang Shan Ling Zhen Fang . Exploration of a Hierarchical and Integration-Oriented Talent Training Model in the Demonstration Center for Experimental Chemistry Education. University Chemistry, 2024, 39(7): 188-192. doi: 10.12461/PKU.DXHX202405107

    4. [4]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    5. [5]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    6. [6]

      Yang Wang Yunpeng Fu Xiaoji Liu Guotao Zhang Guobin Li Wanqiang Liu Jinglun Wang . Structural Analysis of Nitrile Solutions Based on Infrared Spectroscopy Probes. University Chemistry, 2025, 40(4): 367-374. doi: 10.12461/PKU.DXHX202406113

    7. [7]

      Xinzhi Ding Chong Liu Jing Niu Nan Chen Shutao Xu Yingxu Wei Zhongmin Liu . Solid-state NMR study of the stability of MOR framework aluminum. Chinese Journal of Structural Chemistry, 2024, 43(4): 100247-100247. doi: 10.1016/j.cjsc.2024.100247

    8. [8]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    9. [9]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    10. [10]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    11. [11]

      Mingjie Lei Wenting Hu Kexin Lin Xiujuan Sun Haoshen Zhang Ye Qian Tongyue Kang Xiulin Wu Hailong Liao Yuan Pan Yuwei Zhang Diye Wei Ping Gao . Co/Mn/Mo掺杂加速NiSe2重构以提高其电催化尿素氧化性能. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-. doi: 10.1016/j.actphy.2025.100083

    12. [12]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    13. [13]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    14. [14]

      Ling-Hao ZhaoHai-Wei YanJian-Shuang JiangXu ZhangXiang YuanYa-Nan YangPei-Cheng Zhang . Effective assignment of positional isomers in dimeric shikonin and its analogs by 1H NMR spectroscopy. Chinese Chemical Letters, 2024, 35(5): 108863-. doi: 10.1016/j.cclet.2023.108863

    15. [15]

      Honglin Gao Chunlin Yuan Hongyu Chen Aiyi Dong Pan Gao Guangjin Hou . Surface gallium hydride on Ga2O3 polymorphs: A comparative solid-state NMR study. Chinese Journal of Structural Chemistry, 2025, 44(4): 100561-100561. doi: 10.1016/j.cjsc.2025.100561

    16. [16]

      Chunru ZhaoYi LiuShilong LiXiang WuJinghai Liu . PVP decorated H3.78V6O13 microspheres assembled by nanosheets for aqueous zinc ion batteries at variable work temperature. Chinese Chemical Letters, 2025, 36(6): 110185-. doi: 10.1016/j.cclet.2024.110185

    17. [17]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    18. [18]

      Yue LiMinghao FanConghui WangYanxun LiXiang YuJun DingLei YanLele QiuYongcai ZhangLonglu Wang . 3D layer-by-layer amorphous MoSx assembled from [Mo3S13]2- clusters for efficient removal of tetracycline: Synergy of adsorption and photo-assisted PMS activation. Chinese Chemical Letters, 2024, 35(9): 109764-. doi: 10.1016/j.cclet.2024.109764

    19. [19]

      Runze Liu Yankai Bian Weili Dai . Qualitative and quantitative analysis of Brønsted and Lewis acid sites in zeolites: A combined probe-assisted 1H MAS NMR and NH3-TPD investigation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100250-100250. doi: 10.1016/j.cjsc.2024.100250

    20. [20]

      Shuai TangZian WangMengyi ZhuXinyun ZhaoXiaoyun HuHua Zhang . Synthesis of organoboron compounds via heterogeneous C–H and C–X borylation. Chinese Chemical Letters, 2025, 36(5): 110503-. doi: 10.1016/j.cclet.2024.110503

Metrics
  • PDF Downloads(1)
  • Abstract views(541)
  • HTML views(59)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return