Citation: XIE Liang-cai, LI Feng-hai, XUE Zhao-min, XU Long, MA Xiao-xun. Influence of coal blending on ash fusion characteristics for coal with high ash fusion temperature[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(12): 1430-1439. shu

Influence of coal blending on ash fusion characteristics for coal with high ash fusion temperature

  • Corresponding author: XU Long, longxuxulong@163.com
  • Received Date: 18 July 2016
    Revised Date: 17 September 2016

Figures(9)

  • Xiangyang coal with low ash fusion temperature (AFT) and Jincheng coal with high AFT were used to prepare the blending samples. The influence of Xiangyang coal addition on AFT of Jincheng coal was explored by XRF, SEM, DSC, XRD, and ternary phase diagram analysis. The results show that blending coal can reduce the AFT effectively. The AFT of blending coal is lowered significantly when the adding amount of Xiangyang coal is lower than 24%. Whereas, when the adding amount is between 24% and 40%, AFT of the mixed coal has a slight change and the ash flow temperature is below 1 400℃. A series of chemical reactions among ash composition of mixed coal occur at 1 000-1 200℃, mainly including formation of high melting point compound (mullite) from SiO2 with A12O3, and that of low melting point compounds (anorthite and hercynite) from the reactions between mullite and CaO or Fe2O3. The above reactions mainly cause the changes of ash fusion temperature in blending coal. Based on BP neural network, a prediction model of ash fusion temperature was built. It is proved that the prediction average accuracy by BP neural network is higher than 99%, which is better than that of a previous empirical formula. Furthermore, analysis by thermodynamics software (HSC 5.0) shows that mullite prefers to react with CaO rather than Fe2O3.
  • 加载中
    1. [1]

      XIE Ke-chang. Sustainable development on green and low-carbon[J]. J Taiyuan Univ Sci Technol, 2010,41(6):445-448.  

    2. [2]

      LI Qing-feng, ZhAO Xiao-peng, HUANG Jie-jie, FANG Yi-tian, WANG Yang. Introduction to 0.6MPa industrial gasifier of ash agglomerating fluidized-bed coal gasification technology[J]. Chem Eng, 2010,38(10):123-126.  

    3. [3]

      XU Jie, LIU Xia, LI De-xia, ZHOU Zhi-jie, WANG Fu-chen, YU Guang-suo. Predication model for flow temperature of coal ash[J]. J Fuel Chem Technol, 2012,40(12):1415-1420.  

    4. [4]

      CHEN Yu-shuang, ZHANG Zhong-xiao, WU Xiao-jiang, LI Jie, GUAN Rong-qing, YAN Bo. Experimental study on coal ash fusion characteristics of blend coal[J]. J Fuel Chem Technol, 2009,37(5):521-526.  

    5. [5]

      ZHANG De-xiang, LONG Yong-hua, GAO Jin-sheng, ZHENG Bin. Relationship between the coal ash fusibility and its chemical composition[J]. J East China Univ Sci Technol, 2003,29(6):590-594.  

    6. [6]

      LIU Sheng-hua, GAO Na, GUO Yan-hong, YANG Qian. Influence of coal blending on ash fusion temperature[J]. Coal Convers, 2014,37(2):46-49.  

    7. [7]

      GENTILE A L, FOSTER W R. Calcium hexaluminate and its stability relations in the system CaO-Al2O3-SiO2[J]. J Am Ceram Soc, 1963,46(2):74-76. doi: 10.1111/jace.1963.46.issue-2

    8. [8]

      LIU Wen-sheng, ZHAO Hong, YANG Jian-guo, WENG Shan-yong, ZHOU Yong-gang, FENG Guo-hua, LING Bo-lin, ZHENG Hang. Application of three-element phase diagram in study on slagging behavior of blended coal[J]. Therm Power Gener, 2009,5(10):5-10.

    9. [9]

      DAI Ai-jun. Investigation on the influence of ash composition for ash fusion temperature[J]. Clean Coal Technol, 2007,13(5):23-29.  

    10. [10]

      KAHRAMAN H, BOS F, REIFENSTEIN A, COIN C D A. Application of a new ash fusion test to Theodore coals[J]. Fuel, 1998,77(10):1005-1011.  

    11. [11]

      DENG Fu-rong.Investigation on ash fusion characteristics using TG-DSC, XRD and SEM[D].Hangzhou:Zhejiang University, 2005.

    12. [12]

      XU Rong-sheng, WANG Yong-gang, LIN Xiong-chao, YANG Sa-sha, AI Sha-jiang, YANG Yuan-ping. Mineralogical properties of lowering coal ash melting temperature using blending coal and fluxing agent[J]. J Fuel Chem Technol, 2015,43(11):1303-1310.  

    13. [13]

      YU Li-jian, HUANG Zhen-yu, CHENG Jun, PAN Hua-yin, ZHOU Jun-hu, CEN Ke-fa. Study on the coal ash fusibility during blending coal combustion[J]. J Fuel Chem Technol, 2009,37(2):139-144.  

    14. [14]

      WU X J, ZhANG Z X, PIAO G L, HE X, CHEN Y S, KOBAYASHI N, MORI S, ITAYA Y. Behavior of mineral matters in Chinese coal ash melting during char-CO2/H2O gasification reaction[J]. Energy Fuels, 2009,23(5):2420-2428. doi: 10.1021/ef801002n

    15. [15]

      FENG Yun, LI Han-xu, DING Li-ming. Study of huainan coal ash mineral variation under high temperature with XRD[J]. J Anhui Inst Archit, 2008,16(10):53-57.  

    16. [16]

      LI Feng-hai, HUANG Jie-jie, FANG Yi-tian, WANG Yang. Study on fluidized bed gasification slagging mechanism of Jincheng coal[J]. J Taiyuan Univ Sci Technol, 2010,41(5):666-669.  

    17. [17]

      MATJIE R H, LI Z S, WARD C R, FRENCH D. Chemical composition of glass and crystalline phase in coal gasification[J]. Fuel, 2008,87(6):857-869. doi: 10.1016/j.fuel.2007.05.050

    18. [18]

      REITER F M. How sulfur content of coal Relates to ash fusion charaeteristies[J]. Power Eng, 1995,59(5):98-100.

  • 加载中
    1. [1]

      Haolin Zhan Qiyuan Fang Jiawei Liu Xiaoqi Shi Xinyu Chen Yuqing Huang Zhong Chen . Noise Reduction of Nuclear Magnetic Resonance Spectroscopy Using Lightweight Deep Neural Networ. Acta Physico-Chimica Sinica, 2025, 41(2): 100017-. doi: 10.3866/PKU.WHXB202310045

    2. [2]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    3. [3]

      Ming Li Zhaoyin Li Mengzhu Liu Shaoxiang Luo . Unveiling the Artistry of Mordant Dyeing: The Coordination Chemistry Beneath. University Chemistry, 2024, 39(5): 258-265. doi: 10.3866/PKU.DXHX202311085

    4. [4]

      Quanguo Zhai Peng Zhang Wenyu Yuan Ying Wang Shu'ni Li Mancheng Hu Shengli Gao . Reconstructing the “Fundamentals of Coordination Chemistry” in Inorganic Chemistry Course. University Chemistry, 2024, 39(11): 117-130. doi: 10.12461/PKU.DXHX202403065

    5. [5]

      Zhi Zhou Yu-E Lian Yuqing Li Hui Gao Wei Yi . New Insights into the Molecular Mechanism Behind Clinical Tragedies of “Cephalosporin with Alcohol”. University Chemistry, 2025, 40(3): 42-51. doi: 10.12461/PKU.DXHX202403104

    6. [6]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    7. [7]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    8. [8]

      Wanchun Zhu Yongmei Liu Li Wang Yunshan Bai Shu'e Song Xiaokui Wang Zhongyun Wu Hong Yuan Yunchao Li Fuping Tian Yuan Chun Jianrong Zhang Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement and Control of Temperature. University Chemistry, 2025, 40(5): 128-136. doi: 10.12461/PKU.DXHX202503028

    9. [9]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    10. [10]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    11. [11]

      Mingxin LULiyang ZHOUXiaoyu XUXiaoying FENGHui WANGBin YANJie XUChao CHENHui MEIFeng GAO . Preparation of La-doped lead-based piezoelectric ceramics with both high electrical strain and Curie temperature. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 329-338. doi: 10.11862/CJIC.20240206

    12. [12]

      Zhenyu Feng Zhaozhen Cao Jinhua Zhan . Exploration of Online Training System for Large-Scale Instrument in Open Laboratory of Universities. University Chemistry, 2024, 39(4): 1-6. doi: 10.3866/PKU.DXHX202311016

    13. [13]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

Metrics
  • PDF Downloads(7)
  • Abstract views(2228)
  • HTML views(1061)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return