Influence of coal blending on ash fusion characteristics for coal with high ash fusion temperature
- Corresponding author: XU Long, longxuxulong@163.com
Citation:
XIE Liang-cai, LI Feng-hai, XUE Zhao-min, XU Long, MA Xiao-xun. Influence of coal blending on ash fusion characteristics for coal with high ash fusion temperature[J]. Journal of Fuel Chemistry and Technology,
;2016, 44(12): 1430-1439.
XIE Ke-chang. Sustainable development on green and low-carbon[J]. J Taiyuan Univ Sci Technol, 2010,41(6):445-448.
LI Qing-feng, ZhAO Xiao-peng, HUANG Jie-jie, FANG Yi-tian, WANG Yang. Introduction to 0.6MPa industrial gasifier of ash agglomerating fluidized-bed coal gasification technology[J]. Chem Eng, 2010,38(10):123-126.
XU Jie, LIU Xia, LI De-xia, ZHOU Zhi-jie, WANG Fu-chen, YU Guang-suo. Predication model for flow temperature of coal ash[J]. J Fuel Chem Technol, 2012,40(12):1415-1420.
CHEN Yu-shuang, ZHANG Zhong-xiao, WU Xiao-jiang, LI Jie, GUAN Rong-qing, YAN Bo. Experimental study on coal ash fusion characteristics of blend coal[J]. J Fuel Chem Technol, 2009,37(5):521-526.
ZHANG De-xiang, LONG Yong-hua, GAO Jin-sheng, ZHENG Bin. Relationship between the coal ash fusibility and its chemical composition[J]. J East China Univ Sci Technol, 2003,29(6):590-594.
LIU Sheng-hua, GAO Na, GUO Yan-hong, YANG Qian. Influence of coal blending on ash fusion temperature[J]. Coal Convers, 2014,37(2):46-49.
GENTILE A L, FOSTER W R. Calcium hexaluminate and its stability relations in the system CaO-Al2O3-SiO2[J]. J Am Ceram Soc, 1963,46(2):74-76. doi: 10.1111/jace.1963.46.issue-2
LIU Wen-sheng, ZHAO Hong, YANG Jian-guo, WENG Shan-yong, ZHOU Yong-gang, FENG Guo-hua, LING Bo-lin, ZHENG Hang. Application of three-element phase diagram in study on slagging behavior of blended coal[J]. Therm Power Gener, 2009,5(10):5-10.
DAI Ai-jun. Investigation on the influence of ash composition for ash fusion temperature[J]. Clean Coal Technol, 2007,13(5):23-29.
KAHRAMAN H, BOS F, REIFENSTEIN A, COIN C D A. Application of a new ash fusion test to Theodore coals[J]. Fuel, 1998,77(10):1005-1011.
DENG Fu-rong.Investigation on ash fusion characteristics using TG-DSC, XRD and SEM[D].Hangzhou:Zhejiang University, 2005.
XU Rong-sheng, WANG Yong-gang, LIN Xiong-chao, YANG Sa-sha, AI Sha-jiang, YANG Yuan-ping. Mineralogical properties of lowering coal ash melting temperature using blending coal and fluxing agent[J]. J Fuel Chem Technol, 2015,43(11):1303-1310.
YU Li-jian, HUANG Zhen-yu, CHENG Jun, PAN Hua-yin, ZHOU Jun-hu, CEN Ke-fa. Study on the coal ash fusibility during blending coal combustion[J]. J Fuel Chem Technol, 2009,37(2):139-144.
WU X J, ZhANG Z X, PIAO G L, HE X, CHEN Y S, KOBAYASHI N, MORI S, ITAYA Y. Behavior of mineral matters in Chinese coal ash melting during char-CO2/H2O gasification reaction[J]. Energy Fuels, 2009,23(5):2420-2428. doi: 10.1021/ef801002n
FENG Yun, LI Han-xu, DING Li-ming. Study of huainan coal ash mineral variation under high temperature with XRD[J]. J Anhui Inst Archit, 2008,16(10):53-57.
LI Feng-hai, HUANG Jie-jie, FANG Yi-tian, WANG Yang. Study on fluidized bed gasification slagging mechanism of Jincheng coal[J]. J Taiyuan Univ Sci Technol, 2010,41(5):666-669.
MATJIE R H, LI Z S, WARD C R, FRENCH D. Chemical composition of glass and crystalline phase in coal gasification[J]. Fuel, 2008,87(6):857-869. doi: 10.1016/j.fuel.2007.05.050
REITER F M. How sulfur content of coal Relates to ash fusion charaeteristies[J]. Power Eng, 1995,59(5):98-100.
Haolin Zhan , Qiyuan Fang , Jiawei Liu , Xiaoqi Shi , Xinyu Chen , Yuqing Huang , Zhong Chen . Noise Reduction of Nuclear Magnetic Resonance Spectroscopy Using Lightweight Deep Neural Networ. Acta Physico-Chimica Sinica, 2025, 41(2): 100017-. doi: 10.3866/PKU.WHXB202310045
Xuyang Wang , Jiapei Zhang , Lirui Zhao , Xiaowen Xu , Guizheng Zou , Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065
Ming Li , Zhaoyin Li , Mengzhu Liu , Shaoxiang Luo . Unveiling the Artistry of Mordant Dyeing: The Coordination Chemistry Beneath. University Chemistry, 2024, 39(5): 258-265. doi: 10.3866/PKU.DXHX202311085
Quanguo Zhai , Peng Zhang , Wenyu Yuan , Ying Wang , Shu'ni Li , Mancheng Hu , Shengli Gao . Reconstructing the “Fundamentals of Coordination Chemistry” in Inorganic Chemistry Course. University Chemistry, 2024, 39(11): 117-130. doi: 10.12461/PKU.DXHX202403065
Zhi Zhou , Yu-E Lian , Yuqing Li , Hui Gao , Wei Yi . New Insights into the Molecular Mechanism Behind Clinical Tragedies of “Cephalosporin with Alcohol”. University Chemistry, 2025, 40(3): 42-51. doi: 10.12461/PKU.DXHX202403104
Mengyao Shi , Kangle Su , Qingming Lu , Bin Zhang , Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
Wanchun Zhu , Yongmei Liu , Li Wang , Yunshan Bai , Shu'e Song , Xiaokui Wang , Zhongyun Wu , Hong Yuan , Yunchao Li , Fuping Tian , Yuan Chun , Jianrong Zhang , Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement and Control of Temperature. University Chemistry, 2025, 40(5): 128-136. doi: 10.12461/PKU.DXHX202503028
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021
Qiaoqiao BAI , Anqi ZHOU , Xiaowei LI , Tang LIU , Song LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128
Mingxin LU , Liyang ZHOU , Xiaoyu XU , Xiaoying FENG , Hui WANG , Bin YAN , Jie XU , Chao CHEN , Hui MEI , Feng GAO . Preparation of La-doped lead-based piezoelectric ceramics with both high electrical strain and Curie temperature. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 329-338. doi: 10.11862/CJIC.20240206
Zhenyu Feng , Zhaozhen Cao , Jinhua Zhan . Exploration of Online Training System for Large-Scale Instrument in Open Laboratory of Universities. University Chemistry, 2024, 39(4): 1-6. doi: 10.3866/PKU.DXHX202311016
Bowen Yang , Rui Wang , Benjian Xin , Lili Liu , Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024
(a): experimental data; (b): predicted data by BP neural network model
(a): 30% Xiangyang coal; 1100℃; (b): 20% Xiangyang coal; 1100℃; (c): 30% Xiangyang coal; 1200℃; (d): 20% Xiangyang coal; 1200℃
1: quartz, SiO2; 2: rankinite, Ca3Si2O7; 3: mullite, Al6Si2O13; 4: anorthite, CaAl2Si2O8; 5: sillimanite, Al2SiO5; 6: anhydrite, CaSO4; 7: mayenite, Ca12Al14O33; 8: calcium iron oxide, CaO·Fe3O4; 9: alumina, Al2O3; 10: fayalite, Fe2SiO4; 11: calcium iron oxide, CaO·Fe2O3; 12: hercynite, FeAl2O4; 13: yeelimite, Ca4Al6O12SO4; 14: clinotobermorite, Ca5Si6O17 JC: Jincheng coal; XY: Xiangyang coal
1: quartz, SiO2; 2: rankinite, Ca3Si2O7; 3: mullite, Al6Si2O13; 4: anorthite, CaAl2Si2O8; 5: sillimanite, Al2SiO5; 6: anhydrite, CaSO4; 7: mayenite, Ca12Al14O33; 8: calcium iron oxide, CaO·Fe3O4; 9: alumina, Al2O3; 10: fayalite, Fe2SiO4; 11: calcium iron oxide, CaO·Fe2O3; 12: hercynite, FeAl2O4; 13: yeelimite, Ca4Al6O12SO4; 14:clinotobermorite, Ca5Si6O17