Citation: LI Lei-lei, TIAN Hui-hui, HAN Yan-mei, LIU Yan, GAO Zhi-hua, HUANG Wei. Structure and property of AlOOH in CO hydrogenation[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(7): 830-836. shu

Structure and property of AlOOH in CO hydrogenation

  • Corresponding author: GAO Zhi-hua, gaozhihua@tyut.edu.cn
  • Received Date: 18 December 2015
    Revised Date: 23 March 2016

    Fund Project: Natural Science Foundation of Shanxi Province 2012011046-1The project was supported by the National Natural Science Foundation of China 21336006

Figures(6)

  • AlOOH were prepared by precipitation-hydrothermal method with different water-to-gel ratios, which were mixed with industrial methanol synthesis catalyst C302 and tested for CO hydrogenation in the fixed-bed reactor. The AlOOH samples were characterized by XRD, FT-IR, BET, NH3-TPD-MS, TG-DTG and H2-TPR. The results showed that the ratios of water-to-gel in the hydrothermal process had obvious influence on the preferred orientation, pore structure and surface acidity of AlOOH, leading to the different selectivity of higher alcohols and DME. When the ratio of water-to-gel was 2:1, AlOOH showed in (020) and (120) preferred orientation. Moreover, it had larger pore volume and proper ratio of weak acid sites to strong acid sites, the composite catalyst showed a relatively high selectivity of higher alcohols, which indicated that AlOOH favored the growth of carbon chains. This study provided a new way for synthesis of higher alcohols from syngas.
  • 加载中
    1. [1]

      GALLEGO G S, BATIOT-DUPEYRAT C, BARRAULT J, FLOREZ E, MONDRAGÓN F. Dry reforming of methane over LaNi1-yByOδ (B=Mg, Co) perovskites used as catalyst precursor[J]. Appl Catal A: Gen, 2008,334(1/2):251-258.

    2. [2]

      SAN-JOSÉ-ALONSO D, JUAN-JUAN J, ILLÁN-GÓMEZ M J, ROMÁN-MARTÍNEZ M C. Ni, Co and bimetallic Ni-Co catalysts for the dry reforming of methane[J]. Appl Catal A: Gen, 2009,371(1/2):54-59.  

    3. [3]

      JAKOBSEN J G, JAKOBSEN M, CHORKENDORFF I, SEHESTED J. Methane steam reforming kinetics for a rhodium-based catalyst[J]. Catal Lett, 2010,140(3):90-97.  

    4. [4]

      XU J H, YEUNG C M Y, NI J, MEUNIER F, ACERBI N, FOWLES M, TSANG S C. Methane steam reforming for hydrogen production using low water-ratios without carbon formation over ceria coated Ni catalysts[J]. Appl Catal A: Gen, 2008,345(2):119-127. doi: 10.1016/j.apcata.2008.02.044

    5. [5]

      CHRISTIAN ENGER B, LØDENG R, HOLMEN A. A review of catalytic partial oxidation of methane to synthesis gas with emphasis on reaction mechanisms over transition metal catalysts[J]. Appl Catal A: Gen, 2008,346(1/2):1-27.  

    6. [6]

      SILÜA C R B, DA CONCEIÇÃO L, RIBEIRO N F P, SOUZA M M V M. Partial oxidation of methane over Ni-Co perovskite catalysts[J]. Catal Commun, 2011,12(7):665-668. doi: 10.1016/j.catcom.2010.12.025

    7. [7]

      MAESTRI M, VLACHOS D G, BERETTA A, GROPPI G, TRONCONI E. Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models[J]. J Catal, 2008,259(2):211-222. doi: 10.1016/j.jcat.2008.08.008

    8. [8]

      MORTOLA V B, DAMYANOVA S, ZANCHET D, BUENO J M C. Surface and structural features of Pt/CeO2-La2O3-Al2O3 catalysts for partial oxidation and steam reforming of methane[J]. Appl Catal B: Environ, 2011,107(3/4):221-236.

    9. [9]

      BAEK S C, BAE J W, CHEON J Y, JUN K W, LEE K Y. Combined steam and carbon dioxide reforming of methane on Ni/MgAl2O4: Effect of CeO2 promoter to catalytic performance[J]. Catal Lett, 2011,141(2):224-234. doi: 10.1007/s10562-010-0483-0

    10. [10]

      LI De-bao, MA Yu-gang, QI Hui-Jie, LI Wen-huai, SUN Yu-han, ZHONG Bing. Progress in synthesis of mixed alcohols from CO hydrogenation[J]. Prog Chem, 2004,16(4):584-592.  

    11. [11]

      GE Qing-jie, XU Heng-yong, LI Wen-zhao. Key techniques of liquid fuel synthesis from coal-bed methane[J]. Chem Ind Eng Prog, 2009,28(6):917-921.  

    12. [12]

      SURISETTY V R, DALAI A K, KOZINSKI J. Influence of porous characteristics of the carbon support on alkali-modified trimetallic Co-Rh-Mo sulfided catalysts for higher alcohols synthesis from synthesis gas[J]. Appl Catal A: Gen, 2011,393(1/2):50-58.  

    13. [13]

      SHU L, KALIAGUINE S. WELL-DISPERSED perovskite-type oxidation catalysts[J]. Appl Catal B: Environ, 1998,16(4):L303-L308. doi: 10.1016/S0926-3373(97)00097-0

    14. [14]

      MAHDAVI V, PEYROVI M H, ISLAMI M, YEGANE M J. Synthesis of higher alcohols from syngas over Cu-Co2O3/ZnO, Al2O3 catalyst[J]. Appl Catal A: Gen, 2005,281(1/2):259-265.

    15. [15]

      YANG Cheng, LI Jian-qing, CAI Fei-peng, SUN Li, WU Jing-hu. Preparation and application of catalysts for higher alcohols synthesis from syngas: CN, 101653729[P]. 2010-02-24.

    16. [16]

      SUBRAMANI V, GANGWAL S K. A review of recent literature to search for an efficient catalytic process for the conversion of syngas to ethanol[J]. Energy Fuels, 2008,22(2):814-839. doi: 10.1021/ef700411x

    17. [17]

      ZHU Qiu-feng, ZHANG Rong-jun, HE De-hua. Effect of CaO modification on performance of CuZnAlZr catalyst in synthesis of higher alcohols from synthesis gas[J]. Acta Phys-Chim Sin, 2012,28(6):1461-1466.  

    18. [18]

      SUBRAMANIAN N D, BALAJI G, KUMAR CHALLA S S R, SPIVERY JAMES J. Development of cobalt-copper nanoparticles as catalysts for higher alcohol synthesis from syngas[J]. Catal Today, 2009,147(2):100-106. doi: 10.1016/j.cattod.2009.02.027

    19. [19]

      LIN M G, FANG K G, LI D B, SUN Y H. CO hydrogenation to mixed alcohols over co-precipitated Cu-Fe catalysts[J]. Catal Commun, 2008,9(9):1869-1873. doi: 10.1016/j.catcom.2008.03.004

    20. [20]

      SURISETTY V R, TAVASOLI A, DALAI A K. Synthesis of higher alcohols from syngas over alkali promoted MoS2 catalysts supported on multi-walled carbon nanotubes[J]. Appl Catal A: Gen, 2009,365(2):243-251. doi: 10.1016/j.apcata.2009.06.017

    21. [21]

      LIU Lei, HUANG Wei, GAO Zhi-hua. The preparation method of catalyst for DME synthesis from methanol dehydration: CN, 200710139633.0[P]. 2008-04-09.

    22. [22]

      FAN Jin-chuan, WU Hui, HUANG Wei, XIE Ke-chang. Effect of surfactants on structure and performance of Cu-Zn-Al catalyst prepared by complete liquid-phase technology[J]. Chem J Chin Univ, 2008,29(5):993-999.  

    23. [23]

      BOKHIMI X, SANCHEZ VALENTE J, PEDRAZA F. Crystallization of sol-gel boehmite via hydrothermal annealing[J]. Solid State Chem, 2002,166(1):182-190. doi: 10.1006/jssc.2002.9579

    24. [24]

      CHEN X Y, ZHANG Z J, LI X L, LEE S W. Controlled hydrothermal synthesis of colloidal boehmite (γ-AlOOH) nanorods and nanoflakes and their conversion into γ-Al2O3 nanocrystals[J]. Solid State Commun, 2008,145(7/8):368-373.

    25. [25]

      LI G C, LIU Y Q, LIU D, LIU L H, LIU C G. Synthesis of flower-like Boehmite (AlOOH) via a simple solvothermal process without surfactant[J]. Mater Res Bull, 2010,45(10):1487-1491. doi: 10.1016/j.materresbull.2010.06.013

    26. [26]

      XU Z H, YU J G, LOW J X, JARONIEC M. Microemulsion-assisted synthesis of mesoporous aluminum oxyhydroxide nanoflakes for efficient removal of gaseous formaldehyde[J]. ACS Appl Mater Interfaces, 2014,6(3):2111-2117. doi: 10.1021/am405224u

    27. [27]

      JEFFERY A G, DAVID B H, MARGARET E O. Alcohol and thiol adsorption on (oxy) hydroxide and carbon surfaces: Molecular dynamics simulation and desorption experiments[J]. J Phys Chem C, 2012,116(51):26756-26764. doi: 10.1021/jp305275q

    28. [28]

      HUANG J, WANG Y, ZHENG J M, DAI W L, FAN K N. Influence of support surface basicity and gold particle size on catalytic activity of Au/γ-AlOOH and Au/γ-Al2O3 catalyst in aerobic oxidation of α, ω-diols to lactones[J]. Appl Catal B: Environ, 2011,103(3):343-350.

    29. [29]

      LUAN Chun-hui, LÜ Jing-wei, YIN Li-hua, HUANG Wei. Catalysis performance of AlOOH catalysts prepared by complete liquid-phase method for methanol dehydration to dimethyl ether in a fixed bed[J]. J Taiyuan Univ Technol, 2014,45(1):92-96.  

    30. [30]

      XIAO Kang, BAO Zheng-hong, QI Xing-zhen, WANG Xin-xing, ZHONG Liang-shu, FANG Ke-gong, LIN Ming-gui, SUN Yu-han. Advances in bifunctional catalysis for higher alcohol synthesis from syngas[J]. Chin J Catal, 2013,34(1):116-129. doi: 10.1016/S1872-2067(11)60496-8

    31. [31]

      SONG Xian-gen, DING Yun-jie, CHEN Wei-yin, DONG Wen-dong, PEI Yan-peng, ZANG Juan, YAN Li, LÜ yuan. Synthesis of mixed alcohols from CO hydrogenation over Iron and nickel metal phosphide catalysts[J]. Chin J Catal, 2012,33(11/12):1938-1944.  

    32. [32]

      PETROVIC R, MILONJIC S, JOKANOVIC V, KOSTIC-GVOZDENOVIC L, PETROVIC-PRELEVIC I, JANACKOVIC D. Influence of synthesis parameters on the structure of boehmite sol particles[J]. Powder Technol, 2003,133(1/3):185-189.  

    33. [33]

      LUO Yu-chang. The structure evolution of pseudo-boehmite[J]. Inorg Chem Ind, 1998,30(2):3-5.  

    34. [34]

      LIU Jian-guo, DING Ming-yue, WANG Tie-jun, MA Long-long. Structure and performance of Cu-Fe bimodal support for higher alcohol syntheses[J]. Acta Phys-Chim Sin, 2012,28(8):1964-1970.  

    35. [35]

      XU M T, LUNSFORD J H, GOODMAN D W, BHATTACHARYYA A. Synthesis of dimethyl ether (DME) from methanol over solid-acid catalysts[J]. Appl Catal A: Gen, 1997,149(2):289-301. doi: 10.1016/S0926-860X(96)00275-X

    36. [36]

      JOO O S, JUNG K D, HAN S H. Modification of H-ZSM-5 and γ-alumina with formaldehyde and its application to the synthesis of dimethyl ether from syn-gas[J]. Bull Korean Chem Soc, 2002,23(8):1103-1105. doi: 10.5012/bkcs.2002.23.8.1103

    37. [37]

      XIE Feng, LI Han-sheng, ZHAO Xue-Liang, REN Fei, WANG De-zheng, Wang Jin-fu, LIU Jing-li. Adsorption and dehydration of methanol on Al2O3 Catalyst[J]. Chin J Catal, 2004,25(5):403-408.

  • 加载中
    1. [1]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    2. [2]

      Xiaoyang Li Xiaowei Huang Yimeng Zhang Huan Liu Shao Jin Junpeng Zhuang . Comprehensive Chemical Experiments on the Synthesis of 1,3-Dibromo-5,5-Dimethylhydantoin and Its Application as a Brominating Reagent. University Chemistry, 2025, 40(7): 286-293. doi: 10.12461/PKU.DXHX202408035

    3. [3]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    4. [4]

      Zhuo WangXue BaiKexin ZhangHongzhi WangJiabao DongYuan GaoBin Zhao . MOF-Templated Synthesis of Nitrogen-Doped Carbon for Enhanced Electrochemical Sodium Ion Storage and Removal. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-0. doi: 10.3866/PKU.WHXB202405002

    5. [5]

      Lifang HEWenjie TANGYaoze LUOMingsheng LIANGJianxin TANGYuxuan WUFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two dialkyltin complexes constructed based on 2, 2′-bipyridin-6, 6′-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1601-1609. doi: 10.11862/CJIC.20250012

    6. [6]

      Tiejun Su . The Construction and Application of the Calculation Formula for Endpoint Error in Precipitation Titration: A Case Study of the Mohr Method. University Chemistry, 2024, 39(11): 384-387. doi: 10.12461/PKU.DXHX202402039

    7. [7]

      Wenke ZHENGCe LIUWei CHENHongshan KEFanlong ZENGYibo LEIAnyang LIWenyuan WANG . Synthesis and bonding analysis of low-coordinate Fe and Cr complexes with ultra-bulky silylamino groups. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1285-1293. doi: 10.11862/CJIC.20250095

    8. [8]

      Yan'e LIUShengli JIAYifan JIANGQinghua ZHAOYi LIXinshu CHANG . MoO3/cellulose derived carbon aerogel: Fabrication and performance as cathode for lithium-sulfur battery. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1565-1573. doi: 10.11862/CJIC.20250054

    9. [9]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    10. [10]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    11. [11]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    12. [12]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    13. [13]

      Mengyang LIHao XUZhonghao NIUChunhua GONGWeihui ZHONGJingli XIE . Highly effective catalytic synthesis of β-amino alcohols by using viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1294-1300. doi: 10.11862/CJIC.20250080

    14. [14]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    15. [15]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    16. [16]

      Jianding LIJunyang FENGHuimin RENGang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464

    17. [17]

      Jiaojiao Yu Bo Sun Na Li Cong Wen Wei Li . Improvement of Classical Organic Experiment Based on the “Reverse-Step Optimization Method”: Taking Synthesis of Ethyl Acetate as an Example. University Chemistry, 2025, 40(3): 333-341. doi: 10.12461/PKU.DXHX202405177

    18. [18]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    19. [19]

      Jia WangQing QinZhe WangXuhao ZhaoYunfei ChenLiqiang HouShangguo LiuXien Liu . P-Doped Carbon-Supported ZnxPyOz for Efficient Ammonia Electrosynthesis under Ambient Conditions. Acta Physico-Chimica Sinica, 2024, 40(3): 2304044-0. doi: 10.3866/PKU.WHXB202304044

    20. [20]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

Metrics
  • PDF Downloads(0)
  • Abstract views(1662)
  • HTML views(279)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return