Citation: Chen Hao, Yan Kefeng, Li Xiaosen. Research Advance in the Stability Characteristics of Natural Gas Hydrate Based on Quantum Chemical Calculation Methods[J]. Chemistry, ;2020, 83(2): 111-120. shu

Research Advance in the Stability Characteristics of Natural Gas Hydrate Based on Quantum Chemical Calculation Methods

  • Corresponding author: Yan Kefeng, yankf@ms.giec.ac.cn
  • Received Date: 30 October 2019
    Accepted Date: 11 December 2019

Figures(6)

  • Natural gas hydrate with abundant resources, high quality and cleanliness, is regarded as a new energy in the 21st century. The study on the hydrate stability and physical characteristics is important for the reservoirs investigation and exploitation. In this paper, the research advances on natural gas hydrate in microscopic scale, mesoscopic scale, macro-scale and mineral scale are described. The calculation results using quantum chemical calculation methods about hydrate structure and stability as well as the characterization of macroscopic physical properties are elaborated. It points out that quantum chemistry is suitable to describe the crystal structure, electron orbital distribution, vibration spectrum, bonding characteristics, host-guest interaction and equilibrium of natural gas hydrate. It will provide theoretical supports for the research of natural gas hydrate in oil and gas storage and transportation, hydrate accumulation as well as production and comprehensive utilization. At present, optimizations of quantum chemical methods, combination of quantum chemical methods with the molecular dynamics simulation and the molecular mechanics simulation will be helpful for the development of investigation of the hydrate formation and dissociation micro mechanism. It can improve the accuracy of the research and enlarge the research system. It will provide basic data for exploitation and utilization of natural gas hydrate in mine scale.
  • 加载中
    1. [1]

      Kvenvolden K A. Rev. Geophys., 1993, 31(2): 173~187. 

    2. [2]

       

    3. [3]

       

    4. [4]

       

    5. [5]

    6. [6]

       

    7. [7]

      Fisher C R, Macdonald I R, Sassen R, et al. Naturwissenschaften, 2000, 87(4). 

    8. [8]

    9. [9]

      Archer D. Biogeosciences, 2007, (4): 521~544. 

    10. [10]

      Li X S, Xu C G, Zhang Y, et al. Appl. Energy, 2016, 172: 286~322. 

    11. [11]

      Song Y C, Yang L, Zhao J F, et al. Renew. Sustain. Energy Rev., 2014, 31: 778~791. 

    12. [12]

    13. [13]

       

    14. [14]

      Vatamanu J, Kusalik P G. Phys. Chem. Chem. Phys., 2010, 12(45): 15065~15072. 

    15. [15]

      Pirzadeh P, Kusalik P G. J. Am. Chem. Soc., 2013, 135(19): 7278~7287. 

    16. [16]

      Zhang Z, Liu C J, Walsh M R et al. Phys. Chem. Chem. Phys., 2016, 18(23): 15602~15608.

    17. [17]

      Yan K F, Li X S, Chen Z Y, et al. Langmuir, 2016, 32(31): 7975~7984. 

    18. [18]

      Yan K F, Li X S, Chen Z Y, et al. Chin. J. Chem. Eng., 2019, 27(5): 1212~1218.

    19. [19]

    20. [20]

       

    21. [21]

      Yoo S, Kirov M V, Xantheas S S. J. Am. Chem. Soc., 2009, 131(22): 7564~7566. 

    22. [22]

      Mondal S, Chattaraj P K. Phys. Chem. Chem. Phys., 2014, 16(33): 17943~17954.

    23. [23]

      Qin Y, Du Q S, Xie N Z, et al. J. Mol. Graph. Model., 2017, 73: 1~7.

    24. [24]

      Atkins P W, Friedman R. Molecular Quantum Mechanics. 4th ed. NY: Oxford University Press, 2005.

    25. [25]

    26. [26]

       

    27. [27]

      Parr R G, Yang W. Density-functional theory of atoms and molecules. NY: Oxford University Press, 1989.

    28. [28]

      Sloan E D. Nature, 2003, 426(6964): 353~363. 

    29. [29]

      Tariq M, Atilhan M, Khraisheh M, et al. Energy Fuels, 2016, 30(4): 2821~2832. 

    30. [30]

      Huang Y Y, Zhu C Q, Wang L, et al. Chem. Phys. Lett., 2017, 671: 186~191. 

    31. [31]

    32. [32]

      Liu J X, Liu H Y, Xu J F, et al. Chem. Phys. Lett., 2015, 637: 110~114.

    33. [33]

      Martos-villa R, Francisco-márquez M, Mata M P, et al. J. Mol. Graph. Model., 2013, 44: 253~265. 

    34. [34]

       

    35. [35]

    36. [36]

      Giricheva N I, Ischenko A A, Yusupov V I, et al. J. Mol. Struct., 2017, 1132: 157~166.

    37. [37]

      Hou J, Liu J X, Xu J F, et al. Chem. Phys. Lett., 2019, 725: 38~44.

    38. [38]

      Liu Y, Ojamäe L. J. Phys. Chem. A, 2014, 118(49): 11641~11651. 

    39. [39]

      Zhang H S, Luo Q, Cheng S B, et al. J. Phys. Chem. C, 2018, 122(50): 28466~28477.

    40. [40]

      Cao X X, Su Y, Zhao J J. J. Phys. Chem. A, 2015, 119(27): 7063~7069.

    41. [41]

      Atilhan M, Pala N, Aparicio S J. J. Mol. Model., 2014, 20(4): 2182. 

    42. [42]

      Liu J X, Yan Y J, Chen G, et al. Chem. Phys., 2019, 516: 15~21.

    43. [43]

      Thakre N, Jana A K. J. Phys. Chem. A, 2019, 123(13): 2762~2770.

    44. [44]

      Liu J X, Hou J, Xu J F, et al. Int. J. Hydrogen Energy, 2017, 42(27): 17136~17143. 

    45. [45]

      Liu Y, Ojamäe L. J. Phys. Chem. C, 2015, 119(30): 17084~17091.

    46. [46]

      Liu Y, Lojamä E. J. Phys. Chem. C, 2016, 120(2): 1130~1136.

    47. [47]

      Vlasic T M, Servio P D, Rey A D. J. Phys. Chem. B, 2019, 123(4): 936~947.

    48. [48]

      Valdés Á, Arismendi-arrieta D J, Prosmiti R J. J. Phys. Chem. C, 2015, 119(8): 3945~3956. 

    49. [49]

      Jendi Z M, Servio P, Rey A D. Phys. Chem. Chem. Phys., 2016, 18(15): 10320~10328. 

    50. [50]

      Jendi Z M, Servio P, Rey A D. Crystal Growth Design, 2015, 15(11): 5301~5309. 

    51. [51]

      Cao X X, Huang Y Y, Li W B, et al. Phys. Chem. Chem. Phys., 2016, 18(4): 3272~3279.

    52. [52]

      Huang Y Y, Zhu C Q, Wang L, et al. Sci. Adv., 2016, 2(2): e1501010.

  • 加载中
    1. [1]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    2. [2]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    3. [3]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    4. [4]

      Xueli Mu Lingli Han Tao Liu . Quantum Chemical Calculation Study on the E2 Elimination Reaction of Halohydrocarbon: Designing a Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 68-75. doi: 10.12461/PKU.DXHX202404057

    5. [5]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    6. [6]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    7. [7]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    8. [8]

      Mingxuan QiLanyu JinHonghe YaoZipeng XuTeng ChengQi ChenCheng ZhuYang Bai . Recent progress on electrical failure and stability of perovskite solar cells under reverse bias. Acta Physico-Chimica Sinica, 2025, 41(8): 100088-0. doi: 10.1016/j.actphy.2025.100088

    9. [9]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    10. [10]

      Xuefei Zhao Xuhong Hu Zhenhua Jia . 理论与计算化学在傅-克烷基化反应教学中的应用. University Chemistry, 2025, 40(8): 360-367. doi: 10.12461/PKU.DXHX202410008

    11. [11]

      Xuechen HuQiuying XiaFan YueXinyi HeZhenghao MeiJinshi WangHui XiaXiaodong Huang . Electrochemical Characteristics of LiNbO3 Anode Film and Its Applications in All-Solid-State Thin-Film Lithium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2309046-0. doi: 10.3866/PKU.WHXB202309046

    12. [12]

      Supin Zhao Jing Xie . Understanding the Vibrational Stark Effect of Water Molecules Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 178-185. doi: 10.12461/PKU.DXHX202406024

    13. [13]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004

    14. [14]

      Qiuyu Ming Huijun Jiang Zhihao Zhang . A Sightseeing Tour of Folic Acid Processing Plant. University Chemistry, 2024, 39(9): 11-15. doi: 10.12461/PKU.DXHX202404092

    15. [15]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    16. [16]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

    17. [17]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    18. [18]

      Yihan XueXue HanJie ZhangXiaoru Wen . NCQDs修饰FeOOH基复合材料的制备及其电容脱盐性能. Acta Physico-Chimica Sinica, 2025, 41(7): 100072-0. doi: 10.1016/j.actphy.2025.100072

    19. [19]

      Meng-Yin WangRuo-Bei HuangJian-Feng XiongJing-Hua TianJian-Feng LiZhong-Qun Tian . Critical Role and Recent Development of Separator in Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2307017-0. doi: 10.3866/PKU.WHXB202307017

    20. [20]

      Wenkai Chen Yunjia Shen Xiangmeng Kong Yanli Zeng . Quantum Chemistry Calculation of Key Physical Quantity in Circularly Polarized Luminescence: Introducing an Exploratory Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 83-91. doi: 10.12461/PKU.DXHX202405018

Metrics
  • PDF Downloads(15)
  • Abstract views(1120)
  • HTML views(232)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return