Citation:
Hussein Abou-Yousef, El Barbary Hassan, Philip Steele. Rapid conversion of cellulose to 5-hydroxymethylfurfural using single and combined metal chloride catalysts in ionic liquid[J]. Journal of Fuel Chemistry and Technology,
;2013, 41(2): 214-222.
-
Direct conversion of cellulose into 5-hydroxymethylfurfural (HMF) was performed by using single or combined metal chloride catalysts in 1- ethyl-3-methylimidazolium chloride (Cl) ionic liquid. Our study demonstrated formation of 2-furyl hydroxymethyl ketone (FHMK), and furfural (FF) simultaneously with the formation of HMF. Various reaction parameters were addressed to optimize yields of furan derivatives produced from cellulose by varying reaction temperature, time, and the type of metal chloride catalyst. Catalytic reaction by using FeCl3 resulted in 59.9% total yield of furan derivatives (HMF, FHMK, and FF) from cellulose. CrCl3 was the most effective catalyst for selective conversion of cellulose into HMF (35.6%) with less concentrations of FHMK, and FF. Improving the yields of furans produced from cellulose could be achieved via reactions catalyzed by different combinations of two metal chlorides. Further optimization was carried out to produce total furans yield 75.9% by using FeCl3/CuCl2 combination. CrCl3/CuCl2 was the most selective combination to convert cellulose into HMF (39.9%) with total yield (63.8%) of furans produced from the reaction. The temperature and time of the catalytic reaction played an important role in cellulose conversion, and the yields of products. Increasing the reaction temperature could enhance the cellulose conversion and HMF yield for short reaction time intervals (5~20 min).
-
-
-
[1]
[1] PETER R A. Oil supply challenges -1: The non-OPEC decline[J]. Oil Gas J, 2005, 103(7): 20-28.
-
[2]
[2] PARIKKA M. Global biomass fuel resources[J]. Biomass Bioenergy, 2004, 27(6): 613-620.
-
[3]
[3] RAGAUSKAS A J, WILLIAMS C K, DAVISON B H, BRITOVSEK G, CAIRNEY J, ECKERT C A, FREDERICK Jr. J W, HALLETT J P, LEAK D J, LIOTTA C L, MIELENZ J R, MURPHY R, TEMPLER R, TSCHAPLINSKI T. The path forward for biofuels and biomaterials[J]. Science, 2006, 311(5760): 484-489.
-
[4]
[4] CORMA A, IBORRA S, VELTY A. Chemical routes for the conversion of biomass into chemicals[J]. Chem Rev, 2007, 107(6): 2411-2502.
-
[5]
[5] AIDA T M, SATO Y, WATANABE M, TAJIMA K, NONAKA T, HATTORI H, ARAI K. Dehydration of d-glucose in high temperature water at pressures up to 80 MPa[J]. J Supercrit Fluids, 2007, 40(3): 381-388.
-
[6]
[6] BINDER J B, RAINES RT. Simple chemical conversion of lignocellulosic biomass into furans for fuels and chemicals[J]. J Am Chem Soc, 2009, 131(5): 1979-1985.
-
[7]
[7] GANDINI A. Furans as offspring of sugars and polysaccharides and progenitors of a family of remarkable polymers: a review of recent progress[J]. Polym Chem, 2010, 1(3): 245-251.
-
[8]
[8] HUBER G W, JUBEN N C, BARRETT C J, DUMESIC J A. Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates[J]. Science, 2005, 308(5727): 1446-1450.
-
[9]
[9] CHHEDA J N, ROMAN-LESHKOV Y, DUMESIC J A. Production of 5, hydroxymethylfurfural and furfural by dehydration of biomass-derived mono-and poly-saccharides[J]. Green Chem, 2007, 9(4): 342-350.
-
[10]
[10] MOSIER N S, LADISCH C M. Characterization of acid catalytic domains for cellulose hydrolysis and glucose degradation[J]. Biotechnol Bioeng, 2002, 79(6): 610-618.
-
[11]
[11] ROMAN-LESHKOV Y, BARRETT C J, LIU Z Y, DUMESIC J A. Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates[J]. Nature, 2007, 447(7147): 982-986.
-
[12]
[12] HU S, ZHANG Z, ZHOU Y, SONG J, FAN H, HAN B. Direct conversion of inulin to 5-hydroxymethylfurfural in biorenewable ionic liquids[J]. Green Chem, 2009, 11(6): 873-877.
-
[13]
[13] ZAKRZEWSKA M E, BOGEL-LUKASIK E, BOGEL-LUKASIK R. Ionic-liquid mediated formation of 5-hydroxymethylfurfural - A promising biomass-derived building block[J]. Chem Rev, 2011, 111(2): 397-417.
-
[14]
[14] SU Y, BROWN H M, HUANG X, ZHOU X-D, AMONETTE J E, CONRAD ZHANG Z. Single-step conversion of cellulose to 5-hydroxymethylfurfural(HMF), a versatile platform chemical[J]. Appl Catal A, 2009, 361(1/2): 117-122.
-
[15]
[15] ILGEN F, OTT D, KRALISCH D, REIL C, PALMBERG A, KNIG B. Conversion of carbohydrates into 5-hydroxymethylfurfural in highly concentrated low melting mixtures" [J]. Green Chem, 2009, 11(12): 1948-1954.
-
[16]
[16] MOREAU C, FINIELS A, VANOVE l. Dehydration of fructose and sucrose into 5-hydroxymethylfurfural in the presence of 1-H-3-methyl imidazolium chloride acting both as solvent and catalyst[J]. J Mol Catal A, 2006, 253(1/2): 165-169.
-
[17]
[17] KUSTER B F M. 5-hydroxymethylfurfural (HMF). "A review focusing on its manufacture" [J]. Starch/Staerke, 1990, 42(8): 314-321.
-
[18]
[18] ZHANG Z, ZHAO Z K. Microwave-assisted conversion of lignocellulosic biomass into furans in ionic liquid[J]. Bioresour Technol, 2010, 101(3): 1111-1114.
-
[19]
[19] ZHANG H, HOLLADAY J E, BROWN H, CONRAD ZHANG Z . Metal chlorides in ionic liquid solvents convert sugars to hydroxymethylfurfural[J]. Science, 2007, 316(5831): 1597-1600.
-
[20]
[20] SLUITER A, HAMES B, RUIZ R, SCARLATA C, SLUITER J, TEMPLETON D. Determination of Sugars, Byproducts, and Degradation Products in Liquid Fraction Process Samples. National Renewable Energy Laboratory (NREL), 2008.
-
[21]
[21] CHIDAMBARAM M, ALEXIS T B. a two approach for the catalytic conversion of glucose to 2,5- dimethylfuran in ionic liquids[J]. Green Chem, 2010, 12(7): 1253- 1262.
-
[22]
[22] HEINZE T, SCHWIKAL K, BARTHEL S. Ionic liquids as reaction medium in cellulose functionalization[J]. Macromol Biosci, 2005, 5(6): 520- 525.
-
[23]
[23] REMSING R, SWATLSKI R, ROGERS R D, MOYNA G. Mechnism of cellulose dissolution in ionic liquid 1-n- butyl -3- methylimidiazoluim chloride: A13C and35/37Cl NMR relaxation study on model system[J]. Chem Commun, 2006, 12: 1271-1273.
-
[24]
[24] DYNES R C, ROWELL J M. Influence of electrons-per-atom ratio and phonon frequencies on the superconducting transition temperature of lead alloys[J]. Phys Rev B, 1975, 11(5): 1884-1894.
-
[1]
-
-
-
[1]
Hao-Cong Li , Ming Zhang , Qiyan Lv , Kai Sun , Xiao-Lan Chen , Lingbo Qu , Bing Yu . Homogeneous catalysis and heterogeneous separation: Ionic liquids as recyclable photocatalysts for hydroacylation of olefins. Chinese Chemical Letters, 2025, 36(2): 110579-. doi: 10.1016/j.cclet.2024.110579
-
[2]
Xiaoning Li , Quanyu Shi , Meng Li , Ningxin Song , Yumeng Xiao , Huining Xiao , Tony D. James , Lei Feng . Functionalization of cellulose carbon dots with different elements (N, B and S) for mercury ion detection and anti-counterfeit applications. Chinese Chemical Letters, 2024, 35(7): 109021-. doi: 10.1016/j.cclet.2023.109021
-
[3]
Yatian Deng , Dao Wang , Jinglan Cheng , Yunkun Zhao , Zongbao Li , Chunyan Zang , Jian Li , Lichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141
-
[4]
Li Li , Zhi-Xin Yan , Chuan-Kun Ran , Yi Liu , Shuo Zhang , Tian-Yu Gao , Long-Fei Dai , Li-Li Liao , Jian-Heng Ye , Da-Gang Yu . Electro-reductive carboxylation of CCl bonds in unactivated alkyl chlorides and polyvinyl chloride with CO2. Chinese Chemical Letters, 2024, 35(12): 110104-. doi: 10.1016/j.cclet.2024.110104
-
[5]
Beitong Zhu , Xiaorui Yang , Lirong Jiang , Tianhong Chen , Shuangfei Wang , Lintao Zeng . A portable and versatile fluorescent platform for high-throughput screening of toxic phosgene, diethyl chlorophosphate and volatile acyl chlorides. Chinese Chemical Letters, 2025, 36(1): 110222-. doi: 10.1016/j.cclet.2024.110222
-
[6]
Jiayuan Liang , Xin Mi , Songhao Guo , Hui Luo , Kejun Bu , Tonghuan Fu , Menglin Duan , Yang Wang , Qingyang Hu , Rengen Xiong , Peng Qin , Fuqiang Huang , Xujie Lü . Pressure-induced emission in 0D metal halide (EATMP)SbBr5 by regulating exciton-phonon coupling. Chinese Journal of Structural Chemistry, 2024, 43(7): 100333-100333. doi: 10.1016/j.cjsc.2024.100333
-
[7]
Yixia Zhang , Caili Xue , Yunpeng Zhang , Qi Zhang , Kai Zhang , Yulin Liu , Zhaohui Shan , Wu Qiu , Gang Chen , Na Li , Hulin Zhang , Jiang Zhao , Da-Peng Yang . Cocktail effect of ionic patch driven by triboelectric nanogenerator for diabetic wound healing. Chinese Chemical Letters, 2024, 35(8): 109196-. doi: 10.1016/j.cclet.2023.109196
-
[8]
Pei Cao , Yilan Wang , Lejian Yu , Miao Wang , Liming Zhao , Xu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421
-
[9]
Qiangwei Wang , Huijiao Liu , Mengjie Wang , Haojie Zhang , Jianda Xie , Xuanwei Hu , Shiming Zhou , Weitai Wu . Observation of high ionic conductivity of polyelectrolyte microgels in salt-free solutions. Chinese Chemical Letters, 2024, 35(4): 108743-. doi: 10.1016/j.cclet.2023.108743
-
[10]
Tong Zhang , Xiaojing Liang , Licheng Wang , Shuai Wang , Xiaoxiao Liu , Yong Guo . An ionic liquid assisted hydrogel functionalized silica stationary phase for mixed-mode liquid chromatography. Chinese Chemical Letters, 2025, 36(1): 109889-. doi: 10.1016/j.cclet.2024.109889
-
[11]
Jiajia Wang , XinXin Ge , Yajing Xiang , Xiaoliang Qi , Ying Li , Hangbin Xu , Erya Cai , Chaofan Zhang , Yulong Lan , Xiaojing Chen , Yizuo Shi , Zhangping Li , Jianliang Shen . An ionic liquid functionalized sericin hydrogel for drug-resistant bacteria-infected diabetic wound healing. Chinese Chemical Letters, 2025, 36(2): 109819-. doi: 10.1016/j.cclet.2024.109819
-
[12]
Congyan Liu , Xueyao Zhou , Fei Ye , Bin Jiang , Bo Liu . Confined electric field in nano-sized channels of ionic porous framework towards unique adsorption selectivity. Chinese Chemical Letters, 2025, 36(2): 109969-. doi: 10.1016/j.cclet.2024.109969
-
[13]
Jingyu Shi , Xiaofeng Wu , Yutong Chen , Yi Zhang , Xiangyan Hou , Ruike Lv , Junwei Liu , Mengpei Jiang , Keke Huang , Shouhua Feng . Structure factors dictate the ionic conductivity and chemical stability for cubic garnet-based solid-state electrolyte. Chinese Chemical Letters, 2025, 36(5): 109938-. doi: 10.1016/j.cclet.2024.109938
-
[14]
Yuhao Zhou , Siyuan Wu , Xiaozhe Ren , Hongjin Li , Shu Li , Tianying Yan . Effects of salt fraction on the Na+ transport in salt-in-ionic liquid electrolytes. Chinese Chemical Letters, 2025, 36(6): 110048-. doi: 10.1016/j.cclet.2024.110048
-
[15]
Hao Zhang , Hao Liu , Ke Huang , Qingxiu Xia , Hongjie Xiong , Xiaohui Liu , Hui Jiang , Xuemei Wang . Ionic exchange based intracellular self-assembly of pitaya-structured nanoparticles for tumor imaging. Chinese Chemical Letters, 2025, 36(6): 110281-. doi: 10.1016/j.cclet.2024.110281
-
[16]
Luyu Zhang , Zirong Dong , Shuai Yu , Guangyue Li , Weiwen Kong , Wenjuan Liu , Haisheng He , Yi Lu , Wei Wu , Jianping Qi . Ionic liquid-based in situ dynamically self-assembled cationic lipid nanocomplexes (CLNs) for enhanced intranasal siRNA delivery. Chinese Chemical Letters, 2024, 35(7): 109101-. doi: 10.1016/j.cclet.2023.109101
-
[17]
Zhenyu Hu , Zhenchun Yang , Shiqi Zeng , Kun Wang , Lina Li , Chun Hu , Yubao Zhao . Cationic surface polarization centers on ionic carbon nitride for efficient solar-driven H2O2 production and pollutant abatement. Chinese Chemical Letters, 2024, 35(10): 109526-. doi: 10.1016/j.cclet.2024.109526
-
[18]
Yayun Shi , Congcong Liu , Zhijun Zuo , Xiaowei Yang . Self-assembled ultrathick MoS2 conductive hydrogel membrane via ionic gelation for superior capacitive energy storage. Chinese Chemical Letters, 2025, 36(6): 109772-. doi: 10.1016/j.cclet.2024.109772
-
[19]
Jingjing Zhang , Lan Ding , Vadim Popkov , Kezhen Qi . Aqueous indium metal batteries. Chinese Chemical Letters, 2025, 36(2): 110407-. doi: 10.1016/j.cclet.2024.110407
-
[20]
Aimin Fu , Chunmei Chen , Qin Li , Nanjin Ding , Jiaxin Dong , Yu Chen , Mengsha Wei , Weiguang Sun , Hucheng Zhu , Yonghui Zhang . Niduenes A−F, six functionalized sesterterpenoids with a pentacyclic 5/5/5/5/6 skeleton from endophytic fungus Aspergillus nidulans. Chinese Chemical Letters, 2024, 35(9): 109100-. doi: 10.1016/j.cclet.2023.109100
-
[1]
Metrics
- PDF Downloads(522)
- Abstract views(1272)
- HTML views(53)