Citation: TIAN Wei-qian, LIU Jing, LIU Can, FAN Kai, RONG Long. Hydrotreatment of jatropha oil over CoMoS/γ-Al2O3 catalyst[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(2): 207-213. shu

Hydrotreatment of jatropha oil over CoMoS/γ-Al2O3 catalyst

  • Corresponding author: RONG Long, 
  • Received Date: 4 June 2012
    Available Online: 13 August 2012

    Fund Project: 北京航空航天大学基本科研业务项目(YWF-11-02-001)。 (YWF-11-02-001)

  • CoMoS/γ-Al2O3 catalysts were prepared by ex-situ presulfiding method using ammonium thiosulfate as a sulfiding agent and characterized by XRD, N2 physisorption, NH3-TPD and XRF techniques. The catalytic performances were tested by hydrotreatment of jatropha oil in a fixed-bed reactor. The effects of sulfidity, reaction temperature, hydrogen pressure and reaction time on catalyst activity and catalytic product distributions were investigated. Reaction pathways for the hydrotreatment of jatropha oil were also discussed. The results showed that the CoMoS1/γ-Al2O3 catalyst with a sulfidity of 1 had the best hydrotreatment activity, showing 96.3% conversion of jatropha oil and 75.6% yield to the main components of C15~18 n-alkanes at temperature 360℃ and hydrogen pressure 3 MPa. Its conversion was 36.9% higher than that of the non-sulfided CoMo/γ-Al2O3 catalyst at the same reaction conditions. It is worth noticing that both of the conversion of jatropha oil and the total oxygen-free compound of products could achieve 100% over CoMoS1/γ-Al2O3 at 420℃, 3 MPa. With the increase of sulfidity and reaction temperature or the decrease of hydrogen pressure, the hydrodecarboxylation and hydrodecarbonylation were enhanced.
  • 加载中
    1. [1]

      [1] ŠIMACČ EK P, KUBICČKA D, ŠEBOR G, POSPIŠIL M. Hydroprocessed rapeseed oil as a source of hydrocarbon-based biodiesel[J]. Fuel, 2009, 88(3): 456-460.

    2. [2]

      [2] KUBICČKA D, ŠIMACČEK P, ŽILKOVA N. Transformation of vegetable oils into hydrocarbons over mesoporous-alumina-supported CoMo catalysts[J]. Top Catal, 2009, 52(1): 161-168.

    3. [3]

      [3] CHOUDHARY T V, PHILLIPS C B. Renewable fuels via catalytic hydrodeoxygenation[J]. Appl Catal A, 2011, 397(1/ 2): 1-12.

    4. [4]

      [4] TIWARI R, RANA B S, KUMAR R, VERMA D, JOSHI R K, GARG M O, SINHA A K. Hydrotreatment and hydrocracking catalysts for processing of waste soya-oil and refinery-oil mixtures[J]. Catal Commun, 2011, 2(6): 559-562.

    5. [5]

      [5] SOTELO-BOYAÁS R, LIU Y, MINOWA T. Renewable diesel production from the hydrotreatment of rapeseed oil with Pt / Zeolite and NiMo / Al2 O3 catalysts[J]. Ind Eng Chem Res, 2011, 50(5), 2791-2799.

    6. [6]

      [6] MONNIER J, SULIMMA H, DALAI A, CARAVAGGIO G. Hydrodeoxygenation of oleic acid and canola oil over alumina-supported metal nitrides[J]. Appl Catal A, 2010, 382(2): 176-180.

    7. [7]

      [7] 王威燕. 生物油中含氧化合物加氢脱氧新型催化剂的制备、表征及性能研究[D]. 湖南: 湘潭大学, 2011. (WANG Wei-yan. Preparation, characterization and properties of novel catalysts for the hydrodeoxygenation of oxygenic compounds in bio-oil[D]. Hunan: Xiangtan University, 2011. )

    8. [8]

      [8] 冯锡兰, 柳云骐, 陈为超, 周卫东, 刘晨光. 辛癸酸甘油酯催化加氢脱氧反应规律[J]. 中国石油大学学报: 自然科学版, 2009, 33(5): 144-147. (FENG Xi-lan, LIU Yun-qi, CHEN Wei-chao, ZHOU Wei-dong, LIU Chen-guang. Catalytic hydrodeoxygenation reaction rules of decanoyl/octanoyl-glycerides[J]. Journal of China University of Petroleum, 2009, 33(5): 144-147. )

    9. [9]

      [9] KRAR M, KOVACS S, KALLO D, HANCSOK J. Fuel purpose hydrotreatment of sunflower oil on CoMo / Al2 O3 catalyst[J]. Bioresour Technol, 2010, 101(23): 9287-9293.

    10. [10]

      [10] PRIECEL P,CČ APEK L, KUBICČ KA D, HOMOLA F, RYŠANEK P, POUZAR M. The role of alumina support in the deoxygenation of rapeseed oil over NiMo-alumina catalysts[J]. Catal Today, 2011, 176(1): 409-412.

    11. [11]

      [11] KUBICČ KA D, KALUŠA L. Deoxygenation of vegetable oils over sulfided Ni, Mo and NiMo catalysts[J]. Appl Catal A, 2010, 372(2): 199-208.

    12. [12]

      [12] TOBA M, ABE Y, KURAMOCHI H, OSAKO M, MOCHIZUKI T, YOSHIMURA Y. Hydrodeoxygenation of waste vegetable oil over sulfide catalysts[J]. Catal Today, 2011, 164(1): 533-537.

    13. [13]

      [13] 包建国, 杨运泉, 王威燕, 蒋新民, 李娅. CoMo/ZrO2-Al2O3催化剂的制备及其加氢脱氧性能[J]. 燃料化学学报, 2011, 39(1): 59-63. (BAO Jian-guo, YANG Yun-quan, WANG Wei-yan, JIANG Xin-min, LI Ya. Preparation and hydrodeoxygenation properties of CoMo/ZrO2-Al2O3 catalysts[J]. Journal of Fuel Chemistry and Technology, 2011, 39(1): 59-63. )

    14. [14]

      [14] PRIECEL P, KUBICČKA D,CČAPEK L, BASTL Z, RYŠANEK P. The role of Ni species in the deoxygenation of rapeseed oil over NiMo- alumina catalysts[J]. Appl Catal A, 2011, 397(1/ 2): 127-137.

    15. [15]

      [15] NAVA R, PAWELEC B, CASTANO P, ÁLVAREZ-GALVÁN M C, LORICERA C V, FIERRO J L G. Upgrading of bio-liquids on different mesoporous silica-supported CoMo catalysts[J]. Appl Catal B, 2009, 92(1/ 2): 154-167.

    16. [16]

      [16] ENOL O I, VILJAVA T R, KRAUSE A O I. Effect of sulphiding agents on the hydrodeoxygenation of aliphatic esters on sulphided catalysts[J]. Appl Catal A, 2007, 326(2): 236-244.

    17. [17]

      [17] ENOL O I, RYYMIN E M, VILJAVA T R, KRAUSE A O I. Effect of hydrogen sulphide on the hydrodeoxygenation of aromatic and aliphatic oxygenates on sulphided catalysts[J]. J Mol Catal A, 2007, 277(1/ 2): 107-112.

    18. [18]

      [18] 丁伯强. 加氢精制催化剂器外预硫化技术研究[D]. 大庆: 大庆石油学院, 2005. (DING bai-qiang. Study on hydrotreat catalysts of presulfiding technology ex-situ[D]. Daqing: Daqing Petroleum Institute, 2005. )

    19. [19]

      [19] 葛晖, 李学宽, 王建国, 吕占军, 秦张峰, 周立公. 硫代硫酸铵预硫化的Mo/Al2O3催化剂加氢脱硫反应性能研究[J]. 燃料化学学报, 2009, 37(2): 199-204. (GE Hui, LI Xue-kuan, WANG Jian-guo, LV Zhan-jun, QIN Zhang-feng, ZHOU Li-gong. Study on hydrodesulfurization of thiophene over Mo/Al2O3 catalyst presulfided by thiosulphate ammonium[J]. Journal of Fuel Chemistry and Technology, 2009, 37(2): 199-204. )

    20. [20]

      [20] 葛晖, 李学宽, 王国富, 秦张峰, 吕占军, 王建国. 硫代硫酸铵对CoMo 和NiMoP 催化剂的预硫化[J]. 催化学报, 2010, 31(1): 18-20. (GE Hui, LI Xue-kuan, WANG Guo-fu, QIN Zhang-feng, LÜ Zhang-jun, WANG Jiang-guo. Presulfidation of CoMo and NiMoP catalysts by ammonium thiosulfate[J]. Chinese Journal of Catalysis, 2010, 31(1): 18-20. )

    21. [21]

      [21] KUBICČ KA D, BEJBLOVA M, VLK J. Conversion of vegetable oils into hydrocarbons over CoMo/MCM-41 catalysts[J]. Top Catal, 2010, 53(3): 168-178.

    22. [22]

      [22] ENOL O I, VILJAVA T R, KRAUSE A O I. Hydrodeoxygenation of methyl esters on sulphided NiMo/γ-2O3 and CoMo/γ-2O3 catalysts[J]. Catal Today, 2005, 100(3/4): 331-335.

  • 加载中
    1. [1]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    2. [2]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    3. [3]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    4. [4]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    5. [5]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    6. [6]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    7. [7]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    8. [8]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    9. [9]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    10. [10]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    11. [11]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    12. [12]

      Xiaofang Li Zhigang Wang . Modulating dz2-orbital occupancy of Au cocatalysts for enhanced photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-. doi: 10.1016/j.actphy.2025.100080

    13. [13]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    14. [14]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    15. [15]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    16. [16]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    17. [17]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    18. [18]

      Yu Wang Haiyang Shi Zihan Chen Feng Chen Ping Wang Xuefei Wang . 具有富电子Ptδ-壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-. doi: 10.1016/j.actphy.2025.100081

    19. [19]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    20. [20]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

Metrics
  • PDF Downloads(608)
  • Abstract views(1479)
  • HTML views(127)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return