Citation: LÜ Wei, ZHANG Qi, WANG Tie-jun, LI Bo-song, MA Long-long. Thermal degradation behaviors and pyrolysis kinetics of model compounds of bio-oil heavy fractions[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(2): 198-206. shu

Thermal degradation behaviors and pyrolysis kinetics of model compounds of bio-oil heavy fractions

  • Corresponding author: ZHANG Qi, 
  • Received Date: 23 June 2012
    Available Online: 26 September 2012

    Fund Project: 国家自然科学基金青年基金(51106166) (51106166) 国家科技支撑计划(2011BAD22B07) (2011BAD22B07) 国际科技合作项目(246772)。 (246772)

  • Eugenol, vanillic aldehyde and levoglucosan were selected as the model compounds of bio-oil heavy fractions for phenols, aldehydes and saccharides, respectively; their thermal degradation behaviors and pyrolysis kinetics were investigated by thermogravimetric and Fourier transform infrared spectrometer analyses (TG-FT-IR) under non-isothermal conditions. The results indicated that the hydroxylbenzenes exhibits the greatest tendency to decompose, followed by the aldehydes and carbohydrate. One stage thermal degradation is identified for eugenol and vanillic aldehyde, with the formation of water, CO2, CO, alkanes, alkenes, as well as small molecules of phenols and aromatic aldehydes. Levoglucosan pyrolysis proceeds slowly in two stages at medium-high temperature (180~370℃); the products are mainly composed of CO2, aldehydes, ketones, cyclic ethers, and a small amount of water and CO. As for the mixture of the model compounds, there are three stages in the pyrolysis process; the pyrolysis products evolved share the same compositions of three model samples besides the formation of some low molecular acetal polymers. Compared with the single model compounds, the interaction between the carbonyl groups and hydroxyl groups in the mixture of model compounds may produce polycondensates at high temperature (≥ 300℃), which makes a complete pyrolysis of the mixture more difficult. The saccharide should be the key substance that dominates the pyrolysis rate of heavy fractions. By fitting the dynamic profiles of each stage, kinetic parameters of thermal degradation were determined. For the pyrolysis of levoglucosan, the apparent activation energy and reaction order are 115.80kJ/mol and 0.5 (first stage) and 141.19kJ/mol 2/3 (second stage), respectively; for eugenol, the apparent activation energy is 42.29kJ/mol, with the reaction order of 0.7; for vanillic aldehyde, the apparent activation energy is 36.53kJ/mol, with the reaction order of 0.95; for the mixture of model compounds, the apparent activation energy and reaction order are 54.46kJ/mol and 1 (first stage) and 50.67kJ/mol 2/5 (second stage), respectively.
  • 加载中
    1. [1]

      [1] BRIDGWATER A V. Principles and practice of biomass fast pyrolysis processes for liquids[J]. J Anal Appl Pyrolysis , 1999, 51(1/2): 3-22.

    2. [2]

      [2] SCOTTA D S, MAJERSKI P, PISKORZ J, RADLEIN D. A second look at fast pyrolysis of biomass the RTI process[J]. J Anal Appl Pyrol, 1999, 51(1/2): 23-37.

    3. [3]

      [3] MOHAN D, PITTMAN C U, STEELE P H. Pyrolysis of wood/biomass for bio-oil: A critical review[J]. Energy Fuels, 2006, 20(3): 848-889.

    4. [4]

      [4] CZERNIK S, BRIDGWATER A V. Overview of applications of biomass fast pyrolysis oil[J]. Energy Fuels, 2004, 18(2): 590-598.

    5. [5]

      [5] 武景丽, 汪丛伟, 阴秀丽, 吴创之, 马隆龙. 生物油分离方法的研究进展[J]. 石油化工, 2008, 37(1): 95-99. (WU Jing-li, WANG Cong-wei, YIN Xiu-li, WU Chuang-zhi,MA Long-long. Progress and prospect in separation of bio-oil[J]. Petrochemical Technology, 2008, 37(1): 95-99.)

    6. [6]

      [6] TAO H, YUAN L , YE T , GONG L, TU J, YAMAMOTO M, TORIMOTO Y, LI Q . Hydrogen production by low-temperature reforming of organic compounds in bio-oil over CNT-promoting Ni catalyst[J]. Int J Hydrogen Energy, 2009, 34(22): 9095-9107.

    7. [7]

      [7] JUN P, PING C, HUI L, ZHENG X. Catalytic upgrading of bio-oil by HZSM-5 in sub- and super-critical ethanol[J]. Bioresour Technol, 2009, 100(13): 3415-3418.

    8. [8]

      [8] TANG Z, LU Q, ZHANG Y, ZHU X, GUO Q. One step bio-oil upgrading through hydrotreatme esterification and cracking[J]. Ind Eng Chem Res, 2009, 48(15): 6923-6929.

    9. [9]

      [9] DENG L, LI J, LAI D-M, FU Y, GUO Q-X. Catalytic conversion of biomass-derived carbohydrates igamma-valerolactone without using an external H2 supply[J]. Angew Chem Int Ed, 2009, 48(35): 6529-6532.

    10. [10]

      [10] LIEVENS C, MOURANT D, HE M, GUNAWAN R, LI X, LI C-Z. An FT-IR spectroscopic study of carbonyl functionalities in bio-oils[J]. Fuel, 2011, 90(11): 3417-3423.

    11. [11]

      [11] BRANCA C, BLASI D C, ELEFANTE R. Devolatilization and heterogeneous combustion of wood fast pyrolysis oils[J]. Ind Eng Chem Res, 2005, 44(4): 799-810.

    12. [12]

      [12] 王树荣, 骆仲泱, 谭洪, 洪军, 董良杰, 方梦祥, 岑可法. 生物质热裂解生物油特性的分析研究[J].工程热物理学报, 2004, 25(6): 1049-1052. (WANG Shu-rong, LUO Zhong-yang, TAN Hong, Hong Jun, DONG Liang-jie, FANG Meng-xiang, CEN Ke-fa. The analyses of characteristics of bio-oil produced from biomass by flash pyrolysis[J]. Journal of Engineering of Thermophysics, 2004, 25(6): 1049-1052.)

    13. [13]

      [13] 汪丛伟, 阴秀丽, 吴创之, 马隆龙, 周肇秋, 谢建军. 生物油及其重质组分的热解动力学研究[J]. 工程热物理学报, 2009, 30(10): 1783-1788. (WANG Cong-wei, YIN Xiu-li, WU Chuang-zhi, MA Long-long, ZHOU Zhao-qiu, XIE Jian-jun. Kinetics of pyrolysis of bio-oil and its heavy fractions[J]. Journal of Engineering of Thermophysics, 2009, 30(10): 1783-1788.)

    14. [14]

      [14] 武景丽, 汪丛伟, 阴秀丽, 马隆龙, 周肇秋, 谢建军. 基于TG-FT-IR的生物油重质组分热解特性研究[J].太阳能学报, 2010, 31(1): 113-117. (WU Jing-li, WANG Cong-wei, YIN Xiu-li, WU Chuang-zhi, MA Long-long, ZHOU Zhao-qiu, CHEN Han -ping. Study on pyrolysis of heavy fractions of bio-oil by uusing TG-FT-IR analysis[J]. Acta Energiae Solaris Sinica, 2010, 31(1): 113 -117.)

    15. [15]

      [15] GUO X , WANG S , GUO Z , LIU Q, LUO Z , CEN K . Pyrolysis characteristics of bio-oil fractions separated by molecular distillation[J]. Appl Energy, 2010, 87(9): 2892-2898.

    16. [16]

      [16] GARCIA-PEREZ M, CHAALA A, PAKDEL H, KRETSCHMER D, ROY C. Characterization of Bio-Oils in chemical families[J]. Biomass Bioenergy, 2007, 31(4): 222-242.

    17. [17]

      [17] 彭军. 超临界流体中生物油提质的研究. 杭州: 浙江大学, 2009. (PENG Jun. Upgrading of bio-oil in supercritical fluids. Hangzhou: Zhejiang University, 2009.)

    18. [18]

      [18] 徐俊明. 生物质热解油分类精制基础研究. 南京: 中国林业科学研究院, 2009. (XU Jun-ming. Study on refining and upgrading of biomass pyrolysis oil. Nanjing: Chinese Academy of Forestry Sciences, 2009.)

    19. [19]

      [19] 翁诗甫. 傅里叶红外光谱分析[M]. 2版. 北京: 化学工业出版社, 2010. (WENG Shi-fu. Fourier transform infrared spectroscopy analysis[M]. 2nd ed. Beijing: Chemical Industry Press, 2001.)

    20. [20]

      [20] 武景丽. 生物油及其重质组分的热解实验研究. 广州: 中国科学院广州能源研究所, 2008. (WU Jing-li. The study on pyrolysis characteristics of bio-oil and its heavy fractions. Guangzhou: Guangzhou Institute of Energy Conversion of Chinese Academic of Science, 2008.)

    21. [21]

      [21] PISKORZ J, MAJERSKI P, RADLEIN D. Flash pyrolysis of cellulose for production of anhydro-oligomers[J]. J Anal Appl Pyrolysis, 2000, 56(2): 145-166.

    22. [22]

      [22] BLASIN-AUBE V, BELKOUCH J, MONCEAUX L. General study of catalytic oxidation of various VOCs over La0.8Sr0.2MnO3+x perovskite catalyst influence of mixture[J]. Appl Catal B 2003, 43(2): 175-186.

    23. [23]

      [23] MOK W S L, ANTAL M J. Effects of pressure on biomass pyrolysisⅡ: Heats of reaction of cellulose pyrolysis.[J]. Thermochim Acta, 1983, 68(2/3): 165-186.

    24. [24]

      [24] TAO L, ZHAO G-B, QIAN J, QIN Y-K. TG-FT-IR characterization of pyrolysis of waste mixtures of paint and tar slag[J]. J Hazard Mater, 2010, 175(1/3): 754-761.

    25. [25]

      [25] LIEVENS C, MOURANT D, HE M, RICHARD G W, LI X, LI C-Z. An FT-IR spectroscopic study of carbonyl functionalities in bio-oils[J]. Fuel, 2011, 90(11): 3417-3423.

    26. [26]

      [26] ADKINS H, BRODERICK A E. Hemiacetal formation and the refractive indices and densities of mixtures of certain alcohols and aldehydes[J]. J Am Chem Soc, 1928, 50(2): 499-503.

    27. [27]

      [27] 王贤华, 陈汉平, 张谋, 杨海平. 生物油燃烧特性及动力学研究[J]. 华中科技大学学报(自然科学版), 2008, 36(4): 92-94. (WANG Xian-hua, CHEN Han-ping, ZHANG Mou, YANG Hai-ping. Combustion characteristics of bio-oil and its kinetic analysis[J]. Journal of Huazhong University of Science and Technology (Nature Science), 2008, 36(4): 92-94.)

    28. [28]

      [28] 郭晓亚, 颜涌捷, 李庭琛, 任铮伟. 生物质油精制前后热稳定性和热分解动力学研究[J]. 华东理工大学学报, 2004, 30(3): 270-275. (GUO Xiao-ya,YAN Yong-fie, LI Ting-chen, REN Zheng-wei. Thermal stability and thermal decomposition of bio-oil before and after upgrading[J]. Journal of East China University of Science and Technology, 2004, 30(3): 270-275.)

    29. [29]

      [29] 胡荣祖, 史启祯. 热分析动力学[M]. 北京: 科学出版社, 2001. (HU Rong-zu, SHI Qi-zhen.Thermal analysis kinetics[M]. Beijing: Science Press, 2001.)

  • 加载中
    1. [1]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    2. [2]

      Zhiwen HUPing LIYulong YANGWeixia DONGQifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172

    3. [3]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    4. [4]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    5. [5]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    6. [6]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    7. [7]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    8. [8]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    9. [9]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    10. [10]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    11. [11]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    12. [12]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    13. [13]

      Jiajie Cai Chang Cheng Bowen Liu Jianjun Zhang Chuanjia Jiang Bei Cheng . CdS/DBTSO-BDTO S型异质结光催化制氢及其电荷转移动力学. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-. doi: 10.1016/j.actphy.2025.100084

    14. [14]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    15. [15]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    16. [16]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    17. [17]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    18. [18]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    19. [19]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    20. [20]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

Metrics
  • PDF Downloads(408)
  • Abstract views(1234)
  • HTML views(60)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return