Citation:
HUO Wei, ZHOU Zhi-jie, WANG Yi-fei, YU Guang-suo, HUANG Bin, ZHANG Yu-zhu. Gasification reactivity of feed coal and residue from an industrial gasification plant[J]. Journal of Fuel Chemistry and Technology,
;2013, 41(2): 151-156.
-
The gasification reactivity of raw coal, filter cake and the slag in demister from an industrial gasification plant was investigated with steam and carbon dioxide as the gasification agent. The initial structure and surface characteristic of the samples were analyzed by scanning electron microscope and adsorption apparatus. The results show that the gasification reactivity of the raw coal is better than that of the slag in demister, while the gasification reactivity of the slag is similar to or a bit better than that of filter cake, which is mainly attributed to the extraordinary difference of surface and internal structure of these three samples. As a result of different reaction mechanism with steam and CO2, the gasification reactivity of the samples with steam is about 3 times higher than that with CO2.
-
-
-
[1]
[1] 于广锁, 牛苗任, 王亦飞, 梁钦锋, 于遵宏.气流床煤气化的技术现状和发展趋势[J].现代化工, 2004, 24(5): 23-26. (YU Guang-suo, NIU Miao-ren, WANG Yi-fei, LIANG Qin-feng, YU Zun-hong. Application status and development tendency of coal entrained-bed gasification[J]. Modern Chemical Industry, 2004, 24(5): 23-26.)
-
[2]
[2] 张林仙, 黄戒介, 房倚天, 王洋.中国无烟煤焦气化活性的研究-水蒸气与二氧化碳气化活性的比较[J]. 燃料化学学报, 2006, 34(3): 265-269. (ZHANG Lin-xian, HUANG Jie-jie, FANG Yi-tian, WANG Yang. Study on reactivity of Chinese anthracite chars gasification——Comparsion of reactivity between steam and CO2 gasification[J]. Journal of Fuel Chemistry and Technology, 2006, 34(3): 265-269.)
-
[3]
[3] KORA K, IDA S. Gasification reactivities of metallurgical cokes with carbon dioxide, steam and their mixture[J]. Fuel, 1980, 59(1): 59-63.
-
[4]
[4] 乌晓江, 张忠孝, 朴桂林, 小林信介, 森滋勝, 板谷義紀. 高灰熔点煤高温下煤焦CO2水蒸气气化反应特性的实验研究[J]. 中国电机工程学报, 2007, 27(32): 24-28. (WU Xiao-jiang, ZHANG Zhong-xiao, PIAO Gui-lin, KOBAYASHI Nobusuke, MORI Shigekatsu, ITATYA Yoshinori. Experimental study on gasification reaction characteristics of Chinese high ash fusion temperature coal with CO2 and steam at elevated temperature[J]. Proceedings of the CSEE, 2007, 27(32): 24-28.)
-
[5]
[5] AHMED II, GUPTA A K. Kinetics of woodchips char gasification with steam and carbon dioxide[J].Appl Energy, 2011, 88(5): 1613-1619.
-
[6]
[6] MATSUMOTO K, TAKENO K, ICHINOSE T, OGI T, NAKANISHI M. Gasification reaction kinetics on biomass char obtained as a by-product of gasification in an entrained-flow gasifier with steam and oxygen at 900~1000 ℃[J]. Fuel, 2009, 88(3): 519-527.
-
[7]
[7] 马银剑, 黄斌, 杨加义, 雍晓静. GSP干煤粉气化装置试车总结[J].化肥工业, 2011, 38(5): 61-66. (MA Yin-jian, HUANG Bin, YANG Jia-yi, YONG Xiao-jing. Sum-up of trail run of GSP dry pulverized coal gasification Unit[J]. Journal of the Chemical Fertilizer Industry, 2011, 38(5): 61-66.)
-
[8]
[8] FENG B, BHATIA S K. Variation of the pore structure of coal chars during gasification[J]. Carbon, 2003, 41(3): 507-523.
-
[9]
[9] 杨海平, 陈汉平, 鞠付栋, 王静, 王贤华, 张世红. 热解温度对神府煤热解与气化特性的影响[J]. 中国电机工程学报, 2008, 28(8): 40-45. (YANG Hai-ping, CHEN Han-ping, JU Fu-dong, WANG Jing, WANG Xian-hua, ZHANG Shi-hong. Influence of temperature on coal pyrolysis and char gasification[J]. Proceedings of the CSEE, 2008, 28(8): 40-45.)
-
[10]
[10] YE D P, AGNEW J B, ZHANG D K. Gasification of a South Australian low-rank coal with carbon dioxide and steam: Kinetics and reactivity studies[J]. Fuel, 1998, 77(11): 1209- 1219.
-
[11]
[11] EVERSON R C, NEOMAGUS H W J P, KASAINI H, NJAPHA D. Reaction kinetics of pulverized coal-chars derived from inertinite-rich coal discards: Gasification with carbon dioxide and steam[J]. Fuel, 2006, 85(7/8): 1076-1082.
-
[12]
[12] 楚希杰, 李文, 白宗庆, 李宝庆, 陈皓侃. 神华煤直接液化残渣水蒸气和CO2气化反应性研究[J]. 燃料化学学报, 2010, 38(1): 1-5. (CHU Xi-jie, LI Wen, BAI Zong-qin, LI Bao-qin, CHEN Hao-kan. Gasification reactivity of Shenhua direct liquefaction residue with steam and CO2[J]. Journal of Fuel Chemistry and Technology, 2010, 38(1): 1-5.)
-
[13]
[13] 李庆峰, 房倚天, 张建民, 王洋, 时铭显, 孙国纲. 石油焦水蒸气气化过程孔隙结构和气化速率的变化[J]. 燃料化学学报, 2004, 32(4): 435-439. (LI Qin-feng, FANG yi-tian, ZHANG Jian-min, WANG Yang, SHI Ming-xian, SUN Guo-gang. Changes of pore structure and and gasification activity during steam-gasification of petroleum coke[J]. Journal of Fuel Chemistry and Technology, 2004, 32(4): 435-439.)
-
[14]
[14] DUTTA S, WEN C, BELT R. Reactivity of coal and char:1 In carbon dioxide atmosphere[J]. Ind Eng Chem Press Des Dev, 1977, 16(1): 20-30.
-
[15]
[15] HURT R, SAROFIM A, LONGWELL J. The role of microporous surface area in the gasification of chars from a sub-bituminous coal[J]. Fuel, 1991, 70(9): 1079-1082.
-
[1]
-
-
-
[1]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[2]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[3]
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
-
[4]
Wei HE , Jing XI , Tianpei HE , Na CHEN , Quan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364
-
[5]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[6]
Caixia Lin , Zhaojiang Shi , Yi Yu , Jianfeng Yan , Keyin Ye , Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005
-
[7]
Xue Liu , Lipeng Wang , Luling Li , Kai Wang , Wenju Liu , Biao Hu , Daofan Cao , Fenghao Jiang , Junguo Li , Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049
-
[8]
Yinuo Wang , Siran Wang , Yilong Zhao , Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063
-
[9]
Yuting Zhang , Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037
-
[10]
Renxiao Liang , Zhe Zhong , Zhangling Jin , Lijuan Shi , Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024
-
[11]
Jiaqi AN , Yunle LIU , Jianxuan SHANG , Yan GUO , Ce LIU , Fanlong ZENG , Anyang LI , Wenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072
-
[12]
Ke QIAO , Yanlin LI , Shengli HUANG , Guoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265
-
[13]
Baitong Wei , Jinxin Guo , Xigong Liu , Rongxiu Zhu , Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003
-
[14]
Tong Zhou , Jun Li , Zitian Wen , Yitian Chen , Hailing Li , Zhonghong Gao , Wenyun Wang , Fang Liu , Qing Feng , Zhen Li , Jinyi Yang , Min Liu , Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005
-
[15]
Ji-Quan Liu , Huilin Guo , Ying Yang , Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031
-
[16]
Zhuoyan Lv , Yangming Ding , Leilei Kang , Lin Li , Xiao Yan Liu , Aiqin Wang , Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015
-
[17]
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
-
[18]
Fanpeng Meng , Fei Zhao , Jingkai Lin , Jinsheng Zhao , Huayang Zhang , Shaobin Wang . 优化氮化碳纳米片/球形共轭聚合物S型异质结界面电场以促进析氢反应. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-. doi: 10.1016/j.actphy.2025.100095
-
[19]
Cuicui Yang , Bo Shang , Xiaohua Chen , Weiquan Tian . Understanding the Wave-Particle Duality and Quantization of Confined Particles Starting from Classic Mechanics. University Chemistry, 2025, 40(3): 408-414. doi: 10.12461/PKU.DXHX202407066
-
[20]
.
CCS Chemistry | 超分子活化底物为自由基促进高效选择性光催化氧化
. CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.
-
[1]
Metrics
- PDF Downloads(547)
- Abstract views(828)
- HTML views(30)