Citation: HUO Wei, ZHOU Zhi-jie, WANG Yi-fei, YU Guang-suo, HUANG Bin, ZHANG Yu-zhu. Gasification reactivity of feed coal and residue from an industrial gasification plant[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(2): 151-156. shu

Gasification reactivity of feed coal and residue from an industrial gasification plant

  • Corresponding author: YU Guang-suo, 
  • Received Date: 24 May 2012
    Available Online: 26 July 2012

  • The gasification reactivity of raw coal, filter cake and the slag in demister from an industrial gasification plant was investigated with steam and carbon dioxide as the gasification agent. The initial structure and surface characteristic of the samples were analyzed by scanning electron microscope and adsorption apparatus. The results show that the gasification reactivity of the raw coal is better than that of the slag in demister, while the gasification reactivity of the slag is similar to or a bit better than that of filter cake, which is mainly attributed to the extraordinary difference of surface and internal structure of these three samples. As a result of different reaction mechanism with steam and CO2, the gasification reactivity of the samples with steam is about 3 times higher than that with CO2.
  • 加载中
    1. [1]

      [1] 于广锁, 牛苗任, 王亦飞, 梁钦锋, 于遵宏.气流床煤气化的技术现状和发展趋势[J].现代化工, 2004, 24(5): 23-26. (YU Guang-suo, NIU Miao-ren, WANG Yi-fei, LIANG Qin-feng, YU Zun-hong. Application status and development tendency of coal entrained-bed gasification[J]. Modern Chemical Industry, 2004, 24(5): 23-26.)

    2. [2]

      [2] 张林仙, 黄戒介, 房倚天, 王洋.中国无烟煤焦气化活性的研究-水蒸气与二氧化碳气化活性的比较[J]. 燃料化学学报, 2006, 34(3): 265-269. (ZHANG Lin-xian, HUANG Jie-jie, FANG Yi-tian, WANG Yang. Study on reactivity of Chinese anthracite chars gasification——Comparsion of reactivity between steam and CO2 gasification[J]. Journal of Fuel Chemistry and Technology, 2006, 34(3): 265-269.)

    3. [3]

      [3] KORA K, IDA S. Gasification reactivities of metallurgical cokes with carbon dioxide, steam and their mixture[J]. Fuel, 1980, 59(1): 59-63.

    4. [4]

      [4] 乌晓江, 张忠孝, 朴桂林, 小林信介, 森滋勝, 板谷義紀. 高灰熔点煤高温下煤焦CO2水蒸气气化反应特性的实验研究[J]. 中国电机工程学报, 2007, 27(32): 24-28. (WU Xiao-jiang, ZHANG Zhong-xiao, PIAO Gui-lin, KOBAYASHI Nobusuke, MORI Shigekatsu, ITATYA Yoshinori. Experimental study on gasification reaction characteristics of Chinese high ash fusion temperature coal with CO2 and steam at elevated temperature[J]. Proceedings of the CSEE, 2007, 27(32): 24-28.)

    5. [5]

      [5] AHMED II, GUPTA A K. Kinetics of woodchips char gasification with steam and carbon dioxide[J].Appl Energy, 2011, 88(5): 1613-1619.

    6. [6]

      [6] MATSUMOTO K, TAKENO K, ICHINOSE T, OGI T, NAKANISHI M. Gasification reaction kinetics on biomass char obtained as a by-product of gasification in an entrained-flow gasifier with steam and oxygen at 900~1000 ℃[J]. Fuel, 2009, 88(3): 519-527.

    7. [7]

      [7] 马银剑, 黄斌, 杨加义, 雍晓静. GSP干煤粉气化装置试车总结[J].化肥工业, 2011, 38(5): 61-66. (MA Yin-jian, HUANG Bin, YANG Jia-yi, YONG Xiao-jing. Sum-up of trail run of GSP dry pulverized coal gasification Unit[J]. Journal of the Chemical Fertilizer Industry, 2011, 38(5): 61-66.)

    8. [8]

      [8] FENG B, BHATIA S K. Variation of the pore structure of coal chars during gasification[J]. Carbon, 2003, 41(3): 507-523.

    9. [9]

      [9] 杨海平, 陈汉平, 鞠付栋, 王静, 王贤华, 张世红. 热解温度对神府煤热解与气化特性的影响[J]. 中国电机工程学报, 2008, 28(8): 40-45. (YANG Hai-ping, CHEN Han-ping, JU Fu-dong, WANG Jing, WANG Xian-hua, ZHANG Shi-hong. Influence of temperature on coal pyrolysis and char gasification[J]. Proceedings of the CSEE, 2008, 28(8): 40-45.)

    10. [10]

      [10] YE D P, AGNEW J B, ZHANG D K. Gasification of a South Australian low-rank coal with carbon dioxide and steam: Kinetics and reactivity studies[J]. Fuel, 1998, 77(11): 1209- 1219.

    11. [11]

      [11] EVERSON R C, NEOMAGUS H W J P, KASAINI H, NJAPHA D. Reaction kinetics of pulverized coal-chars derived from inertinite-rich coal discards: Gasification with carbon dioxide and steam[J]. Fuel, 2006, 85(7/8): 1076-1082.

    12. [12]

      [12] 楚希杰, 李文, 白宗庆, 李宝庆, 陈皓侃. 神华煤直接液化残渣水蒸气和CO2气化反应性研究[J]. 燃料化学学报, 2010, 38(1): 1-5. (CHU Xi-jie, LI Wen, BAI Zong-qin, LI Bao-qin, CHEN Hao-kan. Gasification reactivity of Shenhua direct liquefaction residue with steam and CO2[J]. Journal of Fuel Chemistry and Technology, 2010, 38(1): 1-5.)

    13. [13]

      [13] 李庆峰, 房倚天, 张建民, 王洋, 时铭显, 孙国纲. 石油焦水蒸气气化过程孔隙结构和气化速率的变化[J]. 燃料化学学报, 2004, 32(4): 435-439. (LI Qin-feng, FANG yi-tian, ZHANG Jian-min, WANG Yang, SHI Ming-xian, SUN Guo-gang. Changes of pore structure and and gasification activity during steam-gasification of petroleum coke[J]. Journal of Fuel Chemistry and Technology, 2004, 32(4): 435-439.)

    14. [14]

      [14] DUTTA S, WEN C, BELT R. Reactivity of coal and char:1 In carbon dioxide atmosphere[J]. Ind Eng Chem Press Des Dev, 1977, 16(1): 20-30.

    15. [15]

      [15] HURT R, SAROFIM A, LONGWELL J. The role of microporous surface area in the gasification of chars from a sub-bituminous coal[J]. Fuel, 1991, 70(9): 1079-1082.

  • 加载中
    1. [1]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    2. [2]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    3. [3]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    4. [4]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    5. [5]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    6. [6]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    7. [7]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    8. [8]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    9. [9]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    10. [10]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    11. [11]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    12. [12]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    13. [13]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    14. [14]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    15. [15]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    16. [16]

      Zhi Chai Huashan Huang Xukai Shi Yujing Lan Zhentao Yuan Hong Yan . Wittig反应的立体选择性. University Chemistry, 2025, 40(8): 192-201. doi: 10.12461/PKU.DXHX202410046

    17. [17]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    18. [18]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    19. [19]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    20. [20]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

Metrics
  • PDF Downloads(547)
  • Abstract views(855)
  • HTML views(31)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return