Citation:
JIA Jie, SUI Sheng, ZHU Xin-jian, HUANG Bo. Effect of kinetic factors on hydrogen production by coal slurry electrolysis[J]. Journal of Fuel Chemistry and Technology,
;2013, 41(2): 139-143.
-
For understanding the influence of kinetic factors on coal slurry electrolysis, the voltage, temperature, and H2SO4 and Fe3+ concentration were studied. The samples of electrolyzed coal and fresh coal, and composition of the supernatant liquid after electrolysis were analyzed respectively by TGA and ICP. The results show that the parameters of voltage, temperature, Fe3+ and H2SO4 concentration have effect on the current density in the electrolysis. Furthermore, the relationship between the temperature and current density follows the Arrhenius equation. The apparent activation energy of the coal slurry electrolysis is 31.87 kJ/mol at 1 V voltage. TGA and ICP characterization prove that some metal elements in the coal are dissolved into the solution. The coal structure and ash content have obvious difference before and after the electrolysis.
-
Keywords:
- electrolysis,
- coal slurry,
- hydrogen production,
- kinetics,
- carbon dioxide
-
-
-
[1]
[1] COUGHLIN R W, FAROOQUE M. Hydrogen production from coal, water and electrons[J]. Nature (London), 1979, 279(5711): 301-303.
-
[2]
[2] PATIL P, BOTTE G G. 206th Electrochemical Society Meeting// Hawaii:The Electrochemical Society Inc, 2004: 559-565.
-
[3]
[3] PATIL P, ABREU Y D, BOTTE G G. Electrooxidation of coal slurries on different electrode materials[J]. J Power Sources, 2006, 158(1): 368-377.
-
[4]
[4] SATHE N, BOTTE G G. Assessment of coal and graphite electrolysis on carbon fiber electrodes[J]. J Power Sources, 2006, 161(1): 513-523.
-
[5]
[5] 印仁和, 吕士银, 姬学彬, 洪亮铭, 曹为民, 张新胜. 电解煤浆制氢阳极的制备及电催活性研究[J]. 化学学报, 2007, 65(24): 2847-2852. (YIN Ren-he, LÜ Shi-yin, JI Xue-bin, HONG Liang-ming, CAO Wei-min, ZHANG Xin-sheng. Preparation of the catalytic electrodes and study on their catalytic activity for electro-oxidation of coal slurry[J]. Acta Chim Sinica, 2007, 65(24): 2847-2852.)
-
[6]
[6] 成旦红, 洪亮铭, 吕士银, 姬学彬, 印仁和. 电解煤浆制氢钛基阳极铂铁合金催化剂的制备及电催化活性研究[J]. 化学学报, 2008, 66(5): 511-514. (CHENG Dan-hong, HONG Liang-ming, LV Shi-yin, JI Xue-bin, YIN Ren-he. Preparation of the Ti/Pt-Fe anode catalyst and its catalytic activity for electro-oxidation of coal slurry[J]. Acta Chim Sinica, 2008, 66(5): 511-514.)
-
[7]
[7] 印仁和, 赵永刚, 吕士银, 刘怀有, 曹为民.热分解法制备电解煤浆用阳极及其电催化活性[J]. 应用化学, 2010, 27(2): 215-219. (YIN Ren-he, ZHAO Yong-gang, LV Shi-yin, LIU Huai-you, CAO Wei-min. Preparation of anode for electrolysis of coal slurry by thermal decomposition and its electrocatalytic activities[J].Chinese Journal of Applied Chemistry, 2010, 27(2): 215-219.)
-
[8]
[8] YIN R, JI X, ZHANG L, LU S, CAO W, FAN Q. Multilayer nano Ti/TiO2 Pt electrode for coal-hydrogen production[J]. J Electrochem Soc, 2007, 154(12): D637-D641.
-
[9]
[9] HESENOV A, KINIK H, PULI G, GZMEN B, IRMAK S, ERBATUR O. Electrolysis of coal slurries to produce hydrogen gas: Relationship between CO2 and H2 formation[J]. Int J Hydrogen Energy, 2011, 36(9): 5361-5368.
-
[10]
[10] HESENOV A, MERYEMOGLU B, ITEN O. Electrolysis of coal slurries to produce hydrogen gas: Effects of different factors on hydrogen yield[J]. Int J Hydrogen Energy, 2011, 36(19): 12249-12258.
-
[11]
[11] JIN X, BOTTE G G. Understanding the kinetics of coal electrolysis at intermediate temperatures[J]. J Power Sources, 2010, 195(15): 4935-4942.
-
[12]
[12] 刘欢, 王志忠. 煤电解氧化的伏安特性的研究[J]. 燃料化学学报, 2002, 30(2): 182-185. (LIU Huan, WANG Zhi-zhong. Study on volt-ampere characteristics of coal oxidation[J]. Journal of Fuel Chemistry and Technology, 2002, 30(2): 182-185.)
-
[13]
[13] COUGHLIN R W, FAROOQUE M. Consideration of electrodes and electrolytes for electrochemical gasification of coal by anodic oxidation[J]. J Appl Electrochem, 1980, 10(6): 729-740.
-
[14]
[14] DHOOGE P M, PARK S M. Electrochemistry of coal slurries:2 Studies on various experimental parameters affecting oxidation of coal slurries[J]. J Electrochem Soc, 1983, 130(5): 1029-1036.
-
[15]
[15] DHOOGE P M, STILWELL D E, PARK S M. Electrochemical studies of coal slurry oxidation mechanisms[J]. J Electrochem Soc, 1982, 129(10): 1719-1724.
-
[16]
[16] DHOOGE P M, PARK S M. Electrochemistry of coal slurries: 3 FTLR studies of electrolysis of coal[J]. J Electrochem Soc, 1983, 130(7): 1539-1542.
-
[1]
-
-
-
[1]
Mingjie Lei , Wenting Hu , Kexin Lin , Xiujuan Sun , Haoshen Zhang , Ye Qian , Tongyue Kang , Xiulin Wu , Hailong Liao , Yuan Pan , Yuwei Zhang , Diye Wei , Ping Gao . Co/Mn/Mo掺杂加速NiSe2重构以提高其电催化尿素氧化性能. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-. doi: 10.1016/j.actphy.2025.100083
-
[2]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[3]
Zhiwen HU , Ping LI , Yulong YANG , Weixia DONG , Qifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172
-
[4]
Honghong Zhang , Zhen Wei , Derek Hao , Lin Jing , Yuxi Liu , Hongxing Dai , Weiqin Wei , Jiguang Deng . Recent advances in synergistic catalytic valorization of CO2 and hydrocarbons by heterogeneous catalysis. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-. doi: 10.1016/j.actphy.2025.100073
-
[5]
Yueguang Chen , Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074
-
[6]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[7]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[8]
Jiajie Cai , Chang Cheng , Bowen Liu , Jianjun Zhang , Chuanjia Jiang , Bei Cheng . CdS/DBTSO-BDTO S型异质结光催化制氢及其电荷转移动力学. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-. doi: 10.1016/j.actphy.2025.100084
-
[9]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[10]
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
-
[11]
Wei HE , Jing XI , Tianpei HE , Na CHEN , Quan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364
-
[12]
Yongmei Liu , Lisen Sun , Zhen Huang , Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020
-
[13]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[14]
Jing JIN , Zhuming GUO , Zhiyin XIAO , Xiujuan JIANG , Yi HE , Xiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458
-
[15]
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
-
[16]
Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093
-
[17]
Jiayu Gu , Siqi Wang , Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012
-
[18]
Kaihui Huang , Dejun Chen , Xin Zhang , Rongchen Shen , Peng Zhang , Difa Xu , Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020
-
[19]
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
-
[20]
Yeyun Zhang , Ling Fan , Yanmei Wang , Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044
-
[1]
Metrics
- PDF Downloads(340)
- Abstract views(1104)
- HTML views(90)