Citation:
ZHOU Jian-lin, WANG Yong-gang, HUANG Xin, ZHANG Shu, LIN Xiong-chao. Determination of O-containing functional groups distribution in low-rank coals by chemical titration[J]. Journal of Fuel Chemistry and Technology,
;2013, 41(2): 134-138.
-
Distribution of oxygen-functional groups (carboxyl, alcohol-hydroxyl, phenol-hydroxyl, methoxyl and carbonyl) in 4 Chinese low-rank coals was evaluated based on chemical analysis. Concentration of carboxyl was quantitated by acetic acid calcium ion exchange method and the buffer (pH=8.3). The effect of analysis condition on the concentration of carboxyl and total acidity was studied. The results show that the reliable results are obtained in N2 atmosphere other than in air. The occurrence of carboxyl in coal is carboxylate. When quantitating the concentration of phenol-hydroxyl in the acid-washing brown coal with ion exchanged method, its concentration increases with increasing pH value. Concentration of carboxyl and hydroxyl account for 34.49% and 34.79%, respectively, in the total oxygen for the dry ash free basis brown coal. Different concentrations of carbonyl exist in the low-rank coals, but that of methoxyl is little.
-
-
-
[1]
[1] LI C Z, SATHE C, KERSHAW J R, PANG Y. Fates and roles of alkali and alkaline earth metals during the pyrolysis of a Victorian brown coal[J]. Fuel, 2000, 79(3/4): 427-438.
-
[2]
[2] PORTAL J M, PILLON P, JEANSON P, GERARD B. Oxygen-containing functional groups in land-derived humic acids:l Evaluation by derivatization methods[J]. Org Geochem, 1986, 9(6): 305-311.
-
[3]
[3] SCHAFER H N S. Determination of the total acidity of low-rank coals[J]. Fuel, 1970, 49(3): 271-280.
-
[4]
[4] SCHAFER H N S, WORNAT M J. Determination of carboxyl groups in Yallourn brown coal [J]. Fuel, 1990, 69(11): 1456-1458.
-
[5]
[5] SCHAFER H N S. Determination of carboxyl groups in low-rank coals[J]. Fuel, 1984, 63(5): 723-726.
-
[6]
[6] MURATA S, HOSOKAWA M, KIDENA K, NOMURA M. Analysis of oxygen-functional groups in brown coals[J]. Fuel Process Technol, 2000, 67(3): 231-243.
-
[7]
[7] KELEMEN S R, AFEWOK M, GORBATY M L, COHEN A D. Characterization of organically bound oxygen forms in lignites, peats, and pyrolyzed peats by X-ray photoelectron spectroscopy (XPS) and solid-state 13CNMR methods[J]. Energy Fuels, 2002, 16(6): 1450-1462.
-
[8]
[8] KOZLOWSKI M. XPS study of reductively and non-reductively modified coals[J]. Fuel, 2004, 83(3): 259-265.
-
[9]
[9] MAO J D,HU W G,SCHMIDT R K,DAVIES G,GHABBOUR E A,XING B. Quantitative characterization of humic substances by solid-state carbon-13 nuclear magnetic resonance[J]. Soil Sci Soc Am J, 2000, 64(3): 873-884.
-
[10]
[10] 张蓬洲, 李丽云, 叶朝辉. 用固体高分辨核磁共振研究煤结构[J]. 燃料化学学报, 1993, 21(3): 310- 316. (ZHANG Peng-zhou, LI Li-yun, YE Chao-hui. Solid state 13C-NMR study of Chinese coals[J]. Journal of Fuel Chemistry and Technology, 1993, 21(3): 310- 316.)
-
[11]
[11] 罗陨飞, 李文华, 陈亚飞. 中低变质程度煤显微组分结构的 13C-NMR 研究[J]. 燃料化学学报, 2005, 33( 5): 540- 543. ( LUO Yun- fei, LI Wen- hua, CHEN Ya- fei. 13C- NMR analysis on different macerals of several low- to medium-rank coals[J]. Journal of Fuel Chemistry and Technology, 2005, 33(5): 540- 543.)
-
[12]
[12] 贾建波, 曾凡桂, 孙蓓蕾. 神东2-2煤镜质组大分子结构模型 13C- NMR 谱的构建与修[J]. 燃料化学学报, 2011, 39(9): 652-656. (JIA Jian- bo, ZENG Fan- gui, SUN Bei- lei.Construction and modification of macromolecular structure model for vitrinite from Shendong 2-2 coal[J]. Journal of Fuel Chemistry and Technology, 2011, 39(9): 652-656.)
-
[13]
[13] 王丽, 张蓬洲, 郑敏. 用固体核磁共振和电子能谱研究我国高硫煤的结构[J]. 燃料化学学报, 1996, 24( 6): 539- 543. ( WANG Li, ZHANG Peng- zhou, ZHENG Min. Study on structural characterization of three Chinese coals of high organic sulphur content using XPS and solid-state NMR spectroscopy[J].Journal of Fuel Chemistry and Technology, 1996, 24(6): 539-543.)
-
[14]
[14] HAYASHI J I, TAKAHASHI H, DOI S, KUMAGAI H, CHIBA T. Reactions in brown coal pyrolysis responsible for heating rate effect on tar yield[J]. Energy Fuels, 2000, 14(2): 400-408.
-
[15]
[15] ALLARDIC D J, CLEMOW L M, JACKSON W R. Determination of the acid distribution and total acidity of low-rank coals and coal-derived materials by an improved barium exchange technique[J]. Fuel, 2003, 82(1): 35-40.
-
[16]
[16] USP29–NF24Page 2575, Methoxy determination[S].
-
[17]
[17] 郭崇涛. 煤化学[M]. 北京: 化学工业出版社, 1999. ( GUO Chong-tao. Coal chemistry[M].Beijing: Chemical Industry Press, 1999.)
-
[18]
[18] GB/T 19227—2008, 煤中氮的测定方法[S]. (GB/T 19227—2008, Method for the determination of nitrogen in coal[S].)
-
[19]
[19] KIM Y S, YANG S J, KIM S W, LIM H J, KIM T, PARK C R.Critical revisit to Boehm titration method for CNT surface characterization//2011, Annual World Conference on Carbon 2011: 580-581.
-
[1]
-
-
-
[1]
Juan Hou , Chen Zhou , Jing Sun . Teaching Design of the Classical Analytical Chemistry Content Based on Logical and Innovative Thinking: A Case Study of the Application of Acid-Base Titration Method. University Chemistry, 2024, 39(4): 221-226. doi: 10.3866/PKU.DXHX202310023
-
[2]
Xinyu Zhu , Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106
-
[3]
Danqing Wu , Jiajun Liu , Tianyu Li , Dazhen Xu , Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087
-
[4]
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
-
[5]
Tingting Jiang , Jing Chang . Application of Ideological and Political Education in Chemical Analysis Experiment under the Background of Emerging Engineering Education: Taking the Redox Titration Experiment as an Example. University Chemistry, 2024, 39(2): 168-174. doi: 10.3866/PKU.DXHX202308007
-
[6]
Na Li , Limin Shao . Deduction of the General Formula of the Inverse Function of the Titration Curve. University Chemistry, 2025, 40(3): 390-401. doi: 10.12461/PKU.DXHX202409134
-
[7]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[8]
Huan LI , Shengyan WANG , Long Zhang , Yue CAO , Xiaohan YANG , Ziliang WANG , Wenjuan ZHU , Wenlei ZHU , Yang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088
-
[9]
Hui Shi , Shuangyan Huan , Yuzhi Wang . Ideological and Political Design of Potassium Permanganate Oxidation-Reduction Titration Experiment. University Chemistry, 2024, 39(2): 175-180. doi: 10.3866/PKU.DXHX202308042
-
[10]
Tiejun Su . The Construction and Application of the Calculation Formula for Endpoint Error in Precipitation Titration: A Case Study of the Mohr Method. University Chemistry, 2024, 39(11): 384-387. doi: 10.12461/PKU.DXHX202402039
-
[11]
Fugui XI , Du LI , Zhourui YAN , Hui WANG , Junyu XIANG , Zhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291
-
[12]
Lubing Qin , Fang Sun , Meiyin Li , Hao Fan , Likai Wang , Qing Tang , Chundong Wang , Zhenghua Tang . 原子精确的(AgPd)27团簇用于硝酸盐电还原制氨:一种配体诱导策略来调控金属核. Acta Physico-Chimica Sinica, 2025, 41(1): 2403008-. doi: 10.3866/PKU.WHXB202403008
-
[13]
Hong RAO , Yang HU , Yicong MA , Chunxin LÜ , Wei ZHONG , Lihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275
-
[14]
Limin Shao , Na Li . A Unified Equation Derived from the Charge Balance Equation for Constructing Acid-Base Titration Curve and Calculating Endpoint Error. University Chemistry, 2024, 39(11): 365-373. doi: 10.3866/PKU.DXHX202401086
-
[15]
Juan Yang . Construction of General Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 8-13. doi: 10.12461/PKU.DXHX202408026
-
[16]
Hongyan Chen , Yajun Hou , Shui Hu , Zhuoxun Wei , Fang Zhu , Chengyong Su . Construction of Synthetic Chemistry Experiment of the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 58-63. doi: 10.12461/PKU.DXHX202409109
-
[17]
Hong Yan , Wenfeng Wang , Keyin Ye , Yaofeng Yuan . Organic Electrochemistry and Its Integration into Chemistry Teaching. University Chemistry, 2025, 40(5): 301-310. doi: 10.12461/PKU.DXHX202407027
-
[18]
Yutao Lu , Jing Wu . Rebirth from the Flames: Unveiling the “Chemical Secrets” of Fire Smoke. University Chemistry, 2024, 39(9): 208-213. doi: 10.12461/PKU.DXHX202401001
-
[19]
Liangzhen Hu , Li Ni , Ziyi Liu , Xiaohui Zhang , Bo Qin , Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001
-
[20]
Dongcheng Liu , Xiaokun Li , Huancheng Hu , Cunji Gao , Qiong Hu , Shuting Li , Yuning Liang . Chemistry Experimental Teaching Reform for the Promotion of Training Exceptional Chemistry Teachers for Normal Schools. University Chemistry, 2024, 39(8): 1-6. doi: 10.3866/PKU.DXHX202311072
-
[1]
Metrics
- PDF Downloads(664)
- Abstract views(2760)
- HTML views(244)