Citation: ZHANG Jin-ling, SONG Chun-min, WANG Yan-zhen, DUAN Hong-ling. Preparation of Co-Mo/SiO2-Al2O3 catalyst for hydrotreating lubricating oil[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(5): 543-550. shu

Preparation of Co-Mo/SiO2-Al2O3 catalyst for hydrotreating lubricating oil

  • Corresponding author: WANG Yan-zhen, yanzhenw@upc.edu.cn
  • Received Date: 15 December 2017
    Revised Date: 12 March 2018

Figures(12)

  • SiO2-Al2O3, with a mass content of 5%, 10% and 15%, was synthesized by using a Al(NO3)3-NaAlO2 double hydrolysis method, with surfactant Pluronic P123 as template and Si(OC2H5)4 as Si source. The Co-Mo/SiO2-Al2O3 hydrotreating catalysts for lubricating oil were then prepared by co-impregnation method and characterized by a series of techniques such as XRD, N2 sorption, Py-FTIR, NH3-TPD, H2-TPR, TEM and XRF. The results show that the SiO2-Al2O3 support containing 10% Si is provided with abundant moderate-strong acid sites and partially ordered mesoporous structure; MoS2 particles are uniformly dispersed on the SiO2-Al2O3 surface. Moreover, the Co-Mo/10%SiO2-Al2O3 catalyst exhibits high amount of Bronsted acid sites and type Ⅱ CoMoS active phase. The catalytic performance was evaluated in a high-pressure fixed-bed reactor, with second vacuum side distillate oil as the raw material oil. The results show that the Co-Mo/10%SiO2-Al2O3 catalyst exhibits high activity in hydrotreating and paraffins and cycloalkanes are the main components in product oil. Under 380℃, 15 MPa, a space velocity of 0.6 h-1, and a hydrogen to oil ratio of 1000, the HDS and HDN values over Co-Mo/10%SiO2-Al2O3 exceed 99%. Meanwhile, the contents of S and N in the product are less than 10 and 2 μg/g, respectively, which can meet the requirements on the raw materials for the subsequent isomerization dewaxing process.
  • 加载中
    1. [1]

      TAGUCHI A, SCHÜTH F. Ordered mesoporous materials in catalysis[J]. Microporous Mesoporous Mater, 2005,77(1):1-45. doi: 10.1016/j.micromeso.2004.06.030

    2. [2]

      SHYAMAL K B, SAMIR K M, UDAY T T. Search for an efficient 4, 6-DMDBT hydrodesulfurization catalyst:A review of recent studies[J]. Energy Fuels, 2004,18(5):1227-1237. doi: 10.1021/ef030179+

    3. [3]

      WANG Yan-zhen, ZHANG Jin-ling, SONG Chun-min, DUAN Hong-ling. Preparation of Co-Mo/meso-Al2O3 for vacuum distillate oil hydrotreating[J]. Pet Process Petrochem, 2017(12):68-73. doi: 10.3969/j.issn.1005-2399.2017.12.014

    4. [4]

      YUE Bao-hua, ZHOU Ren-xian, ZHENG Xiao-ming. Preparation and application of Ce-Zr modified alumina with high surface area and high temperature resistance in the automobile emission purification catalyst[C]. 13th Nationwide Academic Conference Proceedings on Catalysis, 2006.

    5. [5]

      JIN Zheng-wei. Synthesis of silica mesoporous materials by using nonionic surfactant as template under mildly acidity conditions[D]. Beijing: Beijing University of Chemical Technology, 2007. 

    6. [6]

      SUZUKI N, SAKKA Y, YAMAUCHI Y. Simple preparation of silica and alumina with a hierarchical pore system via the dual-templating method[J]. Sci Technol Adv Mater, 2009,10(2):1-6.  

    7. [7]

      LI D, LIN Y S, GULIANTS V V. Synthesis and characterization of ordered meso-macro-porous silica membranes on a porous alumina support[J]. Tsinghua Sci Technol, 2010,15(4):377-384. doi: 10.1016/S1007-0214(10)70076-6

    8. [8]

      FU W, ZHANG L, WU D, XIANG M, ZHUO Q, HUANG K, TAO Z, TANG T. Mesoporous zeolite-supported metal sulfide catalysts with high activities in the deep hydrogenation of phenanthrene[J]. J Catal, 2015,330:423-433. doi: 10.1016/j.jcat.2015.07.026

    9. [9]

      LI G C, LIU Y Q, TANG Z, LIU C G. Effects of rehydration of alumina on its structural properties, surface acidity, and HDN activity of quinolone[J]. Appl Catal A:Gen, 2012,437/438:79-89. doi: 10.1016/j.apcata.2012.06.017

    10. [10]

      PARRY E P. An infrared study of pyridine adsorbed on acidic solids. Characterization of surface acidity[J]. J Catal, 1963,2(5):371-379. doi: 10.1016/0021-9517(63)90102-7

    11. [11]

      BUSCA G. Spectroscopic characterization of the acid properties of metal oxide catalysts[J]. Catal Today, 1998,41(1/3):191-206.  

    12. [12]

      GRZECHOWIAK J R, RYNKOWSKI J, WERESZCZAKO-ZIELINSKA I. Catalytic hydrotreatment on alumina-titania supported NiMo sulphides[J]. Catal Today, 2001,65(2/4):225-231.  

    13. [13]

      ARRIBAS M A, CONCEPCIÓN P, MARTÍNEZ A. The role of metal sites during the coupled hydrogenation and ring opening of tetralin on bifunctional Pt(Ir)/USY catalysts[J]. Appl Catal A:Gen, 2004,267(1/2):111-119.  

    14. [14]

      SANTI D, HOLL T, CALEMMA V, WEITKAMP J. High-performance ring-opening catalysts based on iridium-containing zeolite Beta in the hydroconversion of decalin[J]. Appl Catal A:Gen, 2013,455(2):46-57.  

    15. [15]

      GALPERIN L B, BRICKER J C, HOLMGREN J R. Effect of support acid-basic properties on activity and selectivity of Pt catalysts in reaction of methylcyclopentane ring opening[J]. Appl Catal A:Gen, 2003,239(1/2):297-304.  

    16. [16]

      VALENCIA D, KLIMOVA T. Citric acid loading for MoS2-based catalysts supported on SBA-15. New catalytic materials with high hydrogenolysis ability in hydrodesulfurization[J]. Appl Catal B:Environ, 2013,129(2):137-145.  

    17. [17]

      EJKA J. Organized mesoporous alumina:Synthesis, structure and potential in catalysis[J]. Appl Catal A:Gen, 2003,254(2):327-338. doi: 10.1016/S0926-860X(03)00478-2

    18. [18]

      WANG N, SHEN K, HUANG L, YU X, QIAN W, CHU W. Facile route for synthesizing ordered mesoporous Ni-Ce-Al oxide materials and their catalytic performance for methane dry reforming to hydrogen and syngas[J]. Acs Catal, 2013,3(3):1638-1651.  

    19. [19]

      SONI K, RANA B S, SINHA A K, BHAUMIK A, NANDI M, KUMAR M, DHAR G M. 3-D ordered mesoporous KIT-6 support for effective hydrodesulfurization catalysts[J]. Appl Catal B:Environ, 2009,90(1):55-63.  

    20. [20]

      PARRY E P. An infrared study of pyridine adsorbed on acidic solids. Characterization of surface acidity[J]. J Catal, 1963,2(5):371-379. doi: 10.1016/0021-9517(63)90102-7

    21. [21]

      LIU H, LIU C, YIN C, CHAI Y, LI Y, LIU D, LIU B, LI X, WANG Y, LI X. Preparation of highly active unsupported nickel-zinc-molybdenum catalysts for the hydrodesulfurization of dibenzothiophene[J]. Appl Catal B:Environ, 2015,s174-175:264-276.  

    22. [22]

      LÓPEZ C R, LÓPEZ A A. Effect of water extraction on the surface properties of Mo/Al2O3 and NiMo/Al2O3 hydrotreating catalysts[J]. Appl Catal A:Gen, 2000,202(1):23-28. doi: 10.1016/S0926-860X(00)00449-X

    23. [23]

      OKAMOTO Y, ISHIHARA S, KAWANO M. Preparation of Co-Mo/Al2O3 model sulfide catalysts for hydrodesulfurization and their application to the study of the effects of catalyst preparation[J]. J Catal, 2003,217(1):12-22.  

    24. [24]

      YANG Zhan-lin, JIANG Hong, PENG Shao-zhong, WANG Ji-feng, TANG Zhao-ji. Influence of preparation techniques on the structure and activity of hydrogenation catalysts[J]. Petrochem Technol, 2012,41(8):885-889.  

  • 加载中
    1. [1]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    2. [2]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    3. [3]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    4. [4]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    5. [5]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    6. [6]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    7. [7]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

    8. [8]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004

    9. [9]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    10. [10]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    11. [11]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    12. [12]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    13. [13]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    14. [14]

      Yongqing XuYuyao YangMengna WuXiaoxiao YangXuan BieShiyu ZhangQinghai LiYanguo ZhangChenwei ZhangRobert E. PrzekopBogna SztorchDariusz BrzakalskiHui Zhou . Review on Using Molybdenum Carbides for the Thermal Catalysis of CO2 Hydrogenation to Produce High-Value-Added Chemicals and Fuels. Acta Physico-Chimica Sinica, 2024, 40(4): 2304003-0. doi: 10.3866/PKU.WHXB202304003

    15. [15]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    16. [16]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    17. [17]

      Wei ZhongDan ZhengYuanxin OuAiyun MengYaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005

    18. [18]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012

    19. [19]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    20. [20]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

Metrics
  • PDF Downloads(7)
  • Abstract views(1105)
  • HTML views(140)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return