Citation: Bo Wu, Jingmeng Huang, Guizhen Tan, Zhifeng Hao, Guanghui Hu, Jiye Luo, Chengqiang Cui. DFT Study on the Structure and Properties of Hydantoin and Its Derivatives in the Alkaline Aqueous Solution[J]. Chemistry, ;2021, 84(6): 610-619. shu

DFT Study on the Structure and Properties of Hydantoin and Its Derivatives in the Alkaline Aqueous Solution

Figures(6)

  • Hydantoin and its derivatives, which have strong complexing effects with various metal ions, are expected to replace cyanide as green electroplating complexing agents. Density functional theory (DFT) was used to study the reactivity of hydantoin and its derivatives. The solubility of these derivatives in water was studied by using the molecular polarity index and the percentage of polar surface area in the total area. The results of theoretical calculation were basically consistent with the experimental results reported previously and indicated that the studied molecules have good solubility in water and have significance for further study. Atomic charge, molecular electrostatic potential, composition of the main atoms for HOMO, average local ionization energy and condensed local softness were used to investigate the coordination ability of the atoms of the deprotonated molecules comprehensively. The results revealed that S atom in 2-thiohydantoin (TH) had the most negative atomic charge, showing strong electrostatic interactions with metal ions. In addition, the degree of difficulty for each derivative to reach the deprotonation state was predicted by dissociation constant. The topological analysis based on AIM showed that the molecular structure was stable, while the molecular dynamics simulation at 373K showed that the thermodynamic stability of 1, 3-dihydroxy methyl-5, 5-dimethyl hydantoin(DMDMH) was poor and other molecules' were good.
  • 加载中
    1. [1]

      Sadyrbaeva T Z. Sep. Purif. Technol., 2012, 86: 262~265. 

    2. [2]

      Honma H, Hagiwara K. J. Electrochem. Soc., 1995, 142(1): 81. 

    3. [3]

      Meusel M, Gütschow M. Org. Prep. Proced. Int., 2004, 36(5): 391~443. 

    4. [4]

       

    5. [5]

      Ohtani Y, Sugawara K, Nemoto K, et al. Hyomen gijutsu., 2004, 55(12): 933~936.

    6. [6]

      Luo G, Yuan G H, Li N. RSC Adv., 2016, 6(66): 61341~61345. 

    7. [7]

       

    8. [8]

      Huang F F, Huang M L. J. Electrochem. Soc., 2018, 165(3): D152. 

    9. [9]

      Liu A M, Ren X F, An M Z, et al. Sci. Rep., 2014, 4(1): 1~10.

    10. [10]

      Liu A M, Ren X F, Wang B, et al. RSC Adv., 2014, 4(77): 40930~40940. 

    11. [11]

      Liu A M, Ren X F, Zhang J, et al. RSC Adv., 2016, 6(9): 7348~7355. 

    12. [12]

      Ren X F, Song Y, Liu A M, et al. RSC Adv., 2015, 5(80): 64997~65004. 

    13. [13]

      Ren X F, An M Z. RSC Adv., 2018, 8(5): 2667~2677. 

    14. [14]

      Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 09, Revision A. 02, Gaussian, Inc. Wallingford CT, 2009.

    15. [15]

      Feller D. J. Comput. Chem., 1996, 17(13): 1571~1586. 

    16. [16]

      Lu T, Chen F W. J. Comput. Chem., 2012, 33(5): 580~592. 

    17. [17]

      Humphrey W, Dalke A, Schulten K. J. Mol. Graphics., 1996, 14(1): 33~38. 

    18. [18]

      Liu Z Y, Lu T, Chen Q X. Carbon, 2021, 171: 514~523. 

    19. [19]

       

    20. [20]

      Lu T, Chen F W. J. Theor. Comput. Chem., 2012, 11(1): 163~183. 

    21. [21]

       

    22. [22]

      Lu T, Chen F W. J. Mol. Graph. Model., 2012, 38: 314~323. 

    23. [23]

       

    24. [24]

       

    25. [25]

      Sjoberg P, Murray J S, Brinck T, et al. Can. J. Chem., 1990, 68(8): 1440~1443. 

    26. [26]

      Parr R G, Yang W. J. Am. Chem. Soc., 1984, 106(14): 4049~4050. 

    27. [27]

       

    28. [28]

       

    29. [29]

      Yang W T, Parr R G. PNAS, 1985, 82(20): 6723~6726. 

    30. [30]

      Yang W, Mortier W J. J. Am. Chem. Soc., 1986, 108(19): 5708~5711. 

    31. [31]

      Parr R G, Pearson R G. J. Am. Chem. Soc., 1983, 105(26): 7512~7516. 

    32. [32]

      Wang B, Rong C, Chattaraj P K, et al. Theor. Chem. Acc., 2019, 138(12): 124. 

    33. [33]

      Alongi K S, Shields G C. Annual reports in computational chemistry, Amsterdam: Elsevier, 2010: 113~138.

    34. [34]

      Bader R F W. Acc. Chem. Res., 1985, 18(1): 9~15. 

    35. [35]

      Kassaee M Z, Musavi S M, Akhavan A, et al. Struct. Chem., 2009, 20(5): 839~846. 

    36. [36]

      Car R, Parrinello M. Phys. Rev. Lett., 1985, 55(22): 2471. 

    37. [37]

      Yu C Y, Chen M Y, Lin B, et al. J. Chem. Eng. Data, 2020, 65(2): 814~820. 

    38. [38]

      Pearson R G. J. Am. Chem. Soc., 1963, 85(22): 3533~3539. 

    39. [39]

    40. [40]

      Fukui K. Orientation and Stereoselection. Springer, 1970: 1~85.

    41. [41]

      Wu B, Huang J M, Lv Z M, et al. RSC Adv., 2020, 10(17): 9768~9776. 

  • 加载中
    1. [1]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    2. [2]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    3. [3]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    4. [4]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    5. [5]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    6. [6]

      Tongqi Ye Yanqing Wang Qi Wang Huaiping Cong Xianghua Kong Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128

    7. [7]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    8. [8]

      Xiaochen ZhangFei YuJie Ma . Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-0. doi: 10.3866/PKU.WHXB202311026

    9. [9]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    10. [10]

      Yuhui Yang Jintian Luo Biao Zuo . A Teaching Approach to Polymer Surface and Interface in Undergraduate Polymer Physics Courses. University Chemistry, 2025, 40(4): 126-130. doi: 10.12461/PKU.DXHX202408056

    11. [11]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    12. [12]

      Zhengkun QINZicong PANHui TIANWanyi ZHANGMingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429

    13. [13]

      Zhenhua Wang Haoyang Feng Xiaoyang Shao Wenru Fan . Vitamins in Solid Propellants: Controlled Synthesis of Neutral Macromolecular Bonding Agents. University Chemistry, 2025, 40(4): 1-9. doi: 10.3866/PKU.DXHX202401007

    14. [14]

      Meng Lin Heng Zhang Shiling Yuan . Exploring a Combined Theory-Practice-Simulation Teaching Model in Physical Chemistry: A Case Study of Surface Tension. University Chemistry, 2025, 40(4): 189-194. doi: 10.12461/PKU.DXHX202407053

    15. [15]

      Yanglin JiangMingqing ChenMin LiangYige YaoYan ZhangPeng WangJianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 2309027-0. doi: 10.3866/PKU.WHXB202309027

    16. [16]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

    17. [17]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    18. [18]

      Qiang Xu Rong Zhang Liyan Zhang Jinxuan Liu Shuo Wu Rongwen Lv . Exploration and Practice of Ideological and Political Education Construction in the Course of Practical Instrument Analysis Theory. University Chemistry, 2024, 39(6): 132-136. doi: 10.3866/PKU.DXHX202311018

    19. [19]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    20. [20]

      Ling Zhang Jing Kang . Turn Waste into Valuable: Preparation of High-Strength Water-Based Adhesives from Polymethylmethacrylate Wastes: a Comprehensive Chemical Experiments. University Chemistry, 2024, 39(2): 221-226. doi: 10.3866/PKU.DXHX202306075

Metrics
  • PDF Downloads(54)
  • Abstract views(4760)
  • HTML views(880)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return