Citation: Wang Qing, Chen Yufei, Li Ping, Cheng Jian. Research Advances in the Synthesis and Applications of Graphitic Carbon Nitride Quantum Dots[J]. Chemistry, ;2020, 83(3): 218-225, 264. shu

Research Advances in the Synthesis and Applications of Graphitic Carbon Nitride Quantum Dots

  • Corresponding author: Li Ping, pingli@wit.edu.cn
  • Received Date: 12 September 2019
    Accepted Date: 23 December 2019

Figures(5)

  • Graphitic carbon nitride (g-C3N4) is the most popular research direction by virtue of its stable physicochemical properties and good biocompatibility. Graphitic carbon nitride quantum dots (g-CNQDs), a kind of metal-free analogue for carbon-based QDs, have good biocompatibility, stable fluorescence, high quantum yield, and nontoxicity. Similar to carbon-based QDs, the g-CNQDs have the advantages of small size distribution, good water solubility, easy functionalization, excellent biocompatibility and chemical inertness. Compared with bulk g-C3N4, g-CNQDs have smaller size, higher fluorescence and quantum confinement effect, so they have better photocatalytic and physicochemical properties. In this paper, we aimed to provide a comprehensive review on the synthesis of g-CNQDs and their applications in multiple areas. The recent progress in the synthesis of g-CNQDs by microwave-assisted method, low temperature solid-phase method, thermochemical tailoring method and electrochemical etching method, as well as the current applications of g-CNQDs in catalysts, ion detections, biosensors, diagnosis and treatments were reviewed. The morphology and structure of the g-CNQDs prepared using different methods and precursors will be described, and it is necessary to continuously improve the synthesis method. Finally, the challenges, future trends and prospects of g-CNQDs were briefly pointed out.
  • 加载中
    1. [1]

      Wang X, Maeda K, Thomas A, et al. Nat. Mater., 2008, 8(1):76~80. 

    2. [2]

      Zhu S J, Song Y, Wang J, et al. Nano Today, 2017, 13:10~14. 

    3. [3]

      Wen J, Xie J, Chen X, et al. Appl. Surf. Sci., 2017, 391:72~123. 

    4. [4]

      Barbara J, Elisabeth I, Jürgen S, et al. J. Am. Chem. Soc., 2003, 125(34):10288~10300. 

    5. [5]

      Kroke E, Schwarz M, Horath-Bordon E, et al. New J. Chem., 2002, 26(5):508~512. 

    6. [6]

      Yan S C, Li Z S, Zou Z G, et al. Langmuir, 2009, 25(17):10397~10401. 

    7. [7]

      Jiang L, Yuan X, Zeng G, et al. Appl. Catal. B, 2018, 227:376~385. 

    8. [8]

      Xu J, Zhang L, Shi R, et al. J. Mater. Chem. A, 2013, 1(46):14766~14772. 

    9. [9]

       

    10. [10]

      Wang W, Yu J C, Xia D, et al. Environ. Sci. Technol., 2013, 47(15):8724~8732. 

    11. [11]

      Barman S, Sadhukhan M. J. Mater. Chem. A, 2012, 22(41):21832~21837. 

    12. [12]

      Li H, Shao F Q, Huang H, et al. Sens. Actuat. B, 2016, 226:506~511. 

    13. [13]

      Cao X, Ma J, Lin Y, et al. Spectrochim. Acta A, 2015, 151(1):875~880. 

    14. [14]

      Khabashesku V N, Margrave J L, Zimmerman J, et al. Chem. Mater., 2000, 32(8):1449~1451. 

    15. [15]

      Zimmerman J L, Williams R, Khabashesku V N, et al. Nano Lett., 2001, 1(12):731~734. 

    16. [16]

      Zhou J, Yang Y, Zhang C Y, et al. Chem. Commun., 2013, 49(77):8605~8607. 

    17. [17]

      Fan X, Feng Y, Su Y, et al. RSC Adv., 2015, 5(68):55158~55164. 

    18. [18]

      Wang W J, Yu J C, Shen Z R, et al. Chem. Commun., 2014, 50(70):10148~10150. 

    19. [19]

      Ping N, Zhang L, Gang L, et al. Adv. Funct. Mater., 2012, 22(22):4763~4770. 

    20. [20]

      Song Z P, Lin T, Lin L, et al. Angew. Chem. Int. Ed., 2016, 128(8):2773~2777.

    21. [21]

      He X C, Gu Y X, Ai S C, et al. Appl. Surf. Sci., 2018, 462:303~309. 

    22. [22]

      Hai M, Zheng M, Yang L, et al. Dalton Transac., 2012, 41(31):9526~9531. 

    23. [23]

      Wang H Y, Lu Q, Li M, et al. Anal. Chim. Acta, 2018, 1027:121~129. 

    24. [24]

      Hua M, Zhang S, Pan B, et al. J. Hazard. Mater., 2012, 211:317~331. 

    25. [25]

      Qin J, Zeng H. Appl. Catal. B, 2017, 209:161~173. 

    26. [26]

      Zheng D, Zhang G, Wang X. Appl. Catal. B, 2015, 179:479~488. 

    27. [27]

      Li G, Lian Z, Wang W, et al. Nano Energy, 2016, 19:446~454. 

    28. [28]

      Su J, Zhu L, Chen G, et al. Appl. Catal. B, 2016, 186:127~135. 

    29. [29]

      Li Z, Li B, Peng S, et al. RSC Adv., 2014, 4(66):35144~35148. 

    30. [30]

      Lin X, Xu D, Zheng J, et al. J. Alloy Compd., 2016, 688:891~898. 

    31. [31]

      Lin X, Liu C, Wang J, et al. Sep. Purif. Technol., 2019, 226:117~127. 

    32. [32]

      Travlou N A, Giannakoudakis D A, Algarra M, et al. Carbon, 2018, 135:104~111. 

    33. [33]

      Yadav P, Nishanthi S T, Purohit B, et al. Carbon, 2019, 152:587~597. 

    34. [34]

      Yuan H, Liu J, Li H, et al. J. Mater. Chem. A, 2018, 6(14):5603~5607. 

    35. [35]

      Zhong H, Zhang Q, Wang J, et al. ACS Catal., 2018, 8(5):3965~3970. 

    36. [36]

      Neat u S, Maciá-Agulló J A, Concepción P, et al. J. Am. Chem. Soc., 2014, 136(45):15969~15976. 

    37. [37]

      Rakibuddin M, Kim H. Beilstein J. Nanotech., 2019, 10(1):448~458.

    38. [38]

      Shorie M, Kaur H, Chadha G, et al. J. Hazard. Mater., 2019, 367:629~638. 

    39. [39]

    40. [40]

      Patir K, Gogoi S K. ACS Sustain. Chem. Eng., 2017, 6(2):1732~1743. 

    41. [41]

      Wang X, Yang X, Wang N, et al. Mikrochim. Acta, 2018, 185(10):471~479. 

    42. [42]

      Achadu O J, Revaprasadu N. Mikrochim. Acta, 2018, 185(10):461~468. 

    43. [43]

      Zhang S W, Li J X, Zeng M Y, et al. Nanoscale, 2014, 6(8):4157~4162. 

    44. [44]

      Chen S, Hao N, Jiang D, et al. J. Electroanal. Chem., 2017, 787:66~71. 

    45. [45]

      Zu F, Yan F, Bai Z, et al. Microchim. Acta, 2017, 184(7):1899~1914. 

    46. [46]

      Li Y, Cai J, Liu F, et al. Mikrochim. Acta, 2018, 185(2):134~140. 

    47. [47]

      Liu H, Wang X, Wang H, et al. J. Mater. Chem. B, 2019, 7(36):5432~5448. 

    48. [48]

      Wang H, Ma Q, Wang Y, et al. Anal. Chim. Acta, 2017, 973:34~42. 

    49. [49]

      Liu Z, Zhang X, Ge X, et al. Sens. Actuat. B, 2019, 297:126790~126796. 

    50. [50]

      Ngo Y L T, Choi W M, Chung J S, et al. Sens. Actuat. B, 2019, 282:36~44. 

    51. [51]

      Chen J, Gao Y, Hu X, et al. Talanta, 2019, 194:493~500. 

    52. [52]

      Achadu O J, Nyokong T. Anal. Chim. Acta, 2017, 991:113~126. 

    53. [53]

      Feng W, Yu H, Lim C S, et al. Nature, 2010, 463(7284):1061~1065. 

    54. [54]

      Wang N, Fan H, Sun J, et al. Carbon, 2016, 109:141~148. 

    55. [55]

      Li H, Shao F Q, Huang H, et al. Sens. Actuat. B, 2016, 226:506~511. 

    56. [56]

      Bikhof T M, Ebrahimian M, Yousefi M, et al. Artif. Cell Nanomed. B, 2017, 45(3):568~573. 

    57. [57]

      Dong J, Zhao Y, Chen H, et al. New J. Chem., 2018, 42(17):14263~14270. 

    58. [58]

      Zhu H, Li J, Qi X, et al. Nano Lett., 2017, 18(1):586~594.

    59. [59]

      Chan M, Chen C, Lee I, et al. Inorg. Chem., 2016, 55(20):10267~10277. 

    60. [60]

      Chu X, Li K, Guo H, et al. ACS Biomater. Sci. Eng., 2017, 3(8):1836~1844. 

    61. [61]

      Xu M, Yang G, Bi H, et al. Chem. Eng. J., 2019, 360:866~878. 

    62. [62]

      Li G, Zhu R, Yang Y. Nat. Photonics, 2012, 6(3):153~161. 

    63. [63]

      Chen X, Liu Q, Wu Q, et al. Adv. Funct. Mater., 2016, 26(11):1719~1728. 

    64. [64]

      Li C Z, Wang Z B, Sui X L, et al. RSC Adv., 2016, 6(38):32290~32297. 

  • 加载中
    1. [1]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    2. [2]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    3. [3]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    4. [4]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    5. [5]

      Tong WANGQinyue ZHONGQiong HUANGWeimin GUOXinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011

    6. [6]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    7. [7]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    8. [8]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    9. [9]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    10. [10]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    11. [11]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    12. [12]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    13. [13]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    14. [14]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

    15. [15]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    16. [16]

      Jiajia Wang Sibo Huang Xijing Gao Chaoxun Liu Haibo Zhang . 光催化硝酸根还原产氨的综合实验设计. University Chemistry, 2025, 40(8): 241-248. doi: 10.12461/PKU.DXHX202410050

    17. [17]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

    18. [18]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    19. [19]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    20. [20]

      Jianyin HeLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030

Metrics
  • PDF Downloads(41)
  • Abstract views(3375)
  • HTML views(789)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return