Citation: LIU Heng, ZHOU Chen, ZHANG Yi-nan, KAN Qiu-bin. Facile preparation of hierarchically porous IM-5 zeolite with enhanced catalytic performance in methane aromatization[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(9): 1074-1081. shu

Facile preparation of hierarchically porous IM-5 zeolite with enhanced catalytic performance in methane aromatization

  • Corresponding author: LIU Heng, liuhengjlu@163.com
  • Received Date: 8 May 2017
    Revised Date: 19 July 2017

    Fund Project: This project was supported by Youth Fund of Changchun University of Science and Technology (XJJLG-2015-12)Youth Fund of Changchun University of Science and Technology XJJLG-2015-12

Figures(8)

  • A novel hierarchically porous IM-5-H zeolite material was prepared through one-step crystallization route by means of adjusting the synthesis parameters without introducing any secondary template.The hierarchical IM-5-H zeolite is quite different from the conventional IM-5-C in morphology, textural and acidic properties.After loading Mo, the Mo-IM-5-H catalyst exhibits high activity and stability in non-oxidative aromatization of methane, with a methane conversion of 13.1% and aromatics yield of 7.5%, owing to the mesopores in the IM-5-H zeolite crystals.This work provides a simple way to synthesize hierarchical IM-5 zeolite and expands the application of micro-mesoporous composite material in methane dehydroaromatization.
  • 加载中
    1. [1]

      MA S, GUO X, ZHAO L, SCOTTC S, BAO X. Recent progress in methane dehydroaromatization:From laboratory curiosities to promising technology[J]. J Energy Chem, 2013,22(1):1-20. doi: 10.1016/S2095-4956(13)60001-7

    2. [2]

      MAMONOV N A, FADEEVA E V, GRIGORIEV D A, MIKHAILOV M N, KUSTOV L M, ALKHIMOV S A. Metal-zeolite catalysts for dehydroaromatization of methane[J]. Russ Chem Rev, 2013,82(6):567-585. doi: 10.1070/RC2013v082n06ABEH004346

    3. [3]

      WANG L, TAO L, XIE M, XU G, HUANG J, XU Y. Dehydrogenation and aromatization of methane under non-oxidizing conditions[J]. Catal Lett, 1993,21(1):35-41.  

    4. [4]

      LIU H, WU S, GUO Y, SHANG F, YU X, MA Y, XU C, GUAN J, KAN Q. Synthesis of Mo/IM-5 catalyst and its catalytic behavior in methane non-oxidative aromatization[J]. Fuel, 2011,90:1515-1521. doi: 10.1016/j.fuel.2010.11.027

    5. [5]

      LIU H, YANG S, WU S, SHANG F, YU X, XU C, GUAN J, KAN Q. Synthesis of Mo/TNU-9(TNU-9 Taejon National University No. 9) catalyst and its catalytic performance in methane non-oxidative aromatization[J]. Energy, 2011,36(3):1582-1589. doi: 10.1016/j.energy.2010.12.073

    6. [6]

      LIU H, HU J, LI Z, WU S, LIU L, GUAN J, KAN Q. Synthesis of zeolite IM-5 under rotating and static conditions and the catalytic performance of Mo/H-IM-5 catalyst in methane non-oxidative aromatization[J]. Kinet Catal, 2013,54(4):443-450. doi: 10.1134/S0023158413040083

    7. [7]

      LI B, LI S, LI N, CHEN H, ZHANG W, BAO X, LIN B. Structure and acidity of Mo/ZSM-5 synthesized by solid state reaction for methane dehydrogenation and aromatization[J]. Micropor Mesopor Mat, 2006,88(1/3):244-253.  

    8. [8]

      HU J, WU S, MA Y, YANG X, LI Z, LIU H, HUO Q, GUAN J, KAN Q. Effect of the particle size of MoO3 on the catalytic activity of Mo/ZSM-5 in methane non-oxidative aromatization[J]. New J Chem, 2015,39(7):5459-5469. doi: 10.1039/C5NJ00672D

    9. [9]

      WU P, KAN Q, WANG X, WANG D, XING H, YANG P, WU T. Acidity and catalytic properties for methane conversion of Mo/HZSM-5 catalyst modified by reacting with organometallic complex[J]. Appl Catal A, 2005,282(1/2):39-44.  

    10. [10]

      LIU B, ZHANG Y, LIU J, TIAN M, ZHANG F, AU C T, CHEUNG A S C. Characteristic and mechanism of methane dehydroaromatization over Zn-based/HZSM-5 catalysts under conditions of atmospheric pressure and supersonic jet expansion[J]. J Phys Chem C, 2011,115(34):16954-16962. doi: 10.1021/jp2027065

    11. [11]

      LUZGIN M V, GABRIENKO A A, ROGOV V A, TOKTAREV A V, Parmon V N, STEPANOV A G. The "alkyl" and "carbenium" pathways of methane activation on Ga-modified zeolite BEA:13C solid-state NMR and GC-MS study of methane aromatization in the presence of higher alkane[J]. J Phys Chem C, 2010,114(49):21555-21561. doi: 10.1021/jp1078899

    12. [12]

      SU L, LIU L, ZHUANG J, WANG H, LI Y, SHEN W, XU Y, BAO X. Creating mesopores in ZSM-5 zeolite by alkali treatment:a new way to enhance the catalytic performance of methane dehydroaromatization on Mo/HZSM-5 catalysts[J]. Catal Lett, 2003,91(3):155-167.  

    13. [13]

      LI Y, LIU D, LIU S, WANG W, XIE S, ZHU X, XU L. Thermal and hydrothermal stabilities of the alkali-treated HZSM-5 zeolites[J]. J Nat Gas Chem, 2008,17(1):69-74. doi: 10.1016/S1003-9953(08)60028-6

    14. [14]

      SERRANO, GARCÍAR, VICNETE, LINARES, PROCHÁZKOVÁ, ČJ. Acidic and catalytic properties of hierarchical zeolites and hybrid ordered mesoporous materials assembled from MFI protozeolitic units[J]. J Catal, 2011,279(2):366-380. doi: 10.1016/j.jcat.2011.02.007

    15. [15]

      ZHU H, LIU Z, WANG Y, KONG D, YUAN X, XIE Z. Nanosized CaCO3 as hard template for creation of intracrystal pores within silicalite-1 crystal[J]. Chem Mater, 2008,20(3):1134-1139. doi: 10.1021/cm071385o

    16. [16]

      CHOI M, CHO H S, SRIVASTAVA R, VENKATESAN C, CHOI D, RYOO R. Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity[J]. Nature Mater, 2006,5(9):718-723. doi: 10.1038/nmat1705

    17. [17]

      CHEN L, LI X, ROOKE J C, ZHANG Y, YANG X, TANG Y, XIAO F, SU B. Hierarchically structured zeolites:synthesis, mass transport properties and applications[J]. J Mater Chem, 2012,22(34):17381-17403. doi: 10.1039/c2jm31957h

    18. [18]

      CHU N, YANG J, LI C, CUI J, ZHAO Q, YIN X, LU J, WANG J. An unusual hierarchical ZSM-5 microsphere with good catalytic performance in methane dehydroaromatization[J]. Micropor Mesopor Mat, 2009,118(1):169-175.  

    19. [19]

      CHU N, WANG J, ZHANG Y, YANG J, LU J, YIN D. Nestlike hollow hierarchical MCM-22 microspheres:synthesis and exceptional catalytic properties[J]. Chem Mater, 2010,22(9):2757-2763. doi: 10.1021/cm903645p

    20. [20]

      XU C, LIU H, JIA M, GUAN J, WU S, WU T, KAN Q. Methane non-oxidative aromatization on Mo/ZSM-5:Effect of adding triethoxyphenylsilanes into the synthesis system of ZSM-5[J]. Appl Surf Sci, 2011,257(7):2448-2454. doi: 10.1016/j.apsusc.2010.10.001

    21. [21]

      LIU H, YANG S, HU J, SHANG F, LI Z, XU C, GUAN J, KAN Q. A comparison study of mesoporous Mo/H-ZSM-5 and conventional Mo/H-ZSM-5 catalysts in methane non-oxidative aromatization[J]. Fuel Process Technol, 2012,96:195-202. doi: 10.1016/j.fuproc.2011.12.034

    22. [22]

      HU J, WU S, LIU H, DING H, LI Z, GUAN J, KAN Q. Effect of mesopore structure of TNU-9 on methane dehydroaromatization[J]. RSC Adv, 2014,4(51):26577-26584. doi: 10.1039/c4ra03945a

    23. [23]

      FANG Y, HU H, CHEN G. In situ assembly of zeolite nanocrystals into mesoporous aggregate with single-crystal-like morphology without secondary template[J]. Chem Mater, 2008,20(5):1670-1672. doi: 10.1021/cm703265q

    24. [24]

      CHU N, YANG J, WANG J, YU S, LU J, ZHANG Y, YIN D. A feasible way to enhance effectively the catalytic performance of methane dehydroaromatization[J]. Catal Commun, 2010,11(6):513-517. doi: 10.1016/j.catcom.2009.12.004

    25. [25]

      CUNDY C S, COX P A. The hydrothermal synthesis of zeolites:Precursors, intermediates and reaction mechanism[J]. Cheminform, 2005,82(1/2):1-78.  

    26. [26]

      WU J, WANG B, LI N, XIANG S. Effect of aging method on the synthesis of MCM-22 zeolite in fluoride system[J]. Chin J Catal, 2006,27(7):585-590.  

    27. [27]

      ALFARO S, RODRIGUEZ C, VALENZUELA M A, BOSCH P. Aging time effect on the synthesis of small crystal LTA zeolites in the absence of organic template[J]. Mater Lett, 2007,61(23/24):4655-4658.  

    28. [28]

      YANG X, TIAN G, CHEN L, LI Y, ROOKE J C, WEI Y, LIU Z, DENG Z, VAN T G, SU B. Well-organized zeolite nanocrystal aggregates with interconnected hierarchically micro-meso-macropore systems showing enhanced catalytic performance[J]. Chemistry, 2011,17(52):14987-14995. doi: 10.1002/chem.201101594

  • 加载中
    1. [1]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    2. [2]

      Zhenzhen Zhao Meichen Jiao Jiejie Ling Han Jiang Yan Gao Hao Xu Hai-Qing Li Jingang Jiang Peng Wu Le Xu . Toward the microporous zeolite family with tunable large-medium cage and pore opening. Chinese Journal of Structural Chemistry, 2024, 43(9): 100336-100336. doi: 10.1016/j.cjsc.2024.100336

    3. [3]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    4. [4]

      Naihong Wang Longkang Zhang Yejun Guan Peng Wu Hao Xu . Pt confined in Sn-ECNU-46 zeolite for efficient alkane dehydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100248-100248. doi: 10.1016/j.cjsc.2024.100248

    5. [5]

      Guoliang Liu Zhiqiang Liu Anmin Zheng . Modulation of zeolite surface realizes dynamic copper species redispersion. Chinese Journal of Structural Chemistry, 2024, 43(6): 100308-100308. doi: 10.1016/j.cjsc.2024.100308

    6. [6]

      Jie MaJianxiang WangJianhua YuanXiao LiuYun YangFei Yu . The regulating strategy of hierarchical structure and acidity in zeolites and application of gas adsorption: A review. Chinese Chemical Letters, 2024, 35(11): 109693-. doi: 10.1016/j.cclet.2024.109693

    7. [7]

      Jiayu XuMeng LiBaoxia DongLigang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798

    8. [8]

      Tianyao HeGan LiXiaoqiang XieDong HanYunyue LengQiuli ZhangWenming LiuGuobo LiHongxiang ZhangShan HuangTing HuangHonggen Peng . Design of highly active meso-zeolite enveloping Pt–Ni bimetallic catalysts for degradation of toluene. Chinese Chemical Letters, 2025, 36(4): 110137-. doi: 10.1016/j.cclet.2024.110137

    9. [9]

      Lijun YanShiqi ChenPenglu WangXiangyu LiuLupeng HanTingting YanYuejin LiDengsong Zhang . Hydrothermally stable metal oxide-zeolite composite catalysts for low-temperature NOx reduction with improved N2 selectivity. Chinese Chemical Letters, 2024, 35(6): 109132-. doi: 10.1016/j.cclet.2023.109132

    10. [10]

      Siyu ZongXiaowei YuYining YangXin YangJiyang Li . Multi-mode luminescence anti-counterfeiting and visual iron(Ⅲ) ions RTP detection constructed by assembly of CDs&Eu3+ in porous RHO zeolite. Chinese Chemical Letters, 2025, 36(6): 110343-. doi: 10.1016/j.cclet.2024.110343

    11. [11]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    12. [12]

      Qijun Tang Wenguang Tu Yong Zhou Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170

    13. [13]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    14. [14]

      Junchuan Sun Lu Wang . Carbon exchange enabled supra-photothermal methane dry reforming. Chinese Journal of Structural Chemistry, 2024, 43(10): 100330-100330. doi: 10.1016/j.cjsc.2024.100330

    15. [15]

      Jiao ChenZihan ZhangGuojin SunYudi ChengAihua WuZefan WangWenwen JiangFulin ChenXiuying XieJianli Li . Benzo[4,5]imidazo[1,2-a]pyrimidine-based structure-inherent targeting fluorescent sensor for imaging lysosomal viscosity and diagnosis of lysosomal storage disorders. Chinese Chemical Letters, 2024, 35(11): 110050-. doi: 10.1016/j.cclet.2024.110050

    16. [16]

      Qinming Wu Xiangju Meng . New zeolites with extra-stable extra-large-pore. Chinese Journal of Structural Chemistry, 2024, 43(6): 100310-100310. doi: 10.1016/j.cjsc.2024.100310

    17. [17]

      Junhua WangXin LianXichuan CaoQiao ZhaoBaiyan LiXian-He Bu . Dual polarization strategy to enhance CH4 uptake in covalent organic frameworks for coal-bed methane purification. Chinese Chemical Letters, 2024, 35(8): 109180-. doi: 10.1016/j.cclet.2023.109180

    18. [18]

      Yanling YangZhenfa DingHuimin WangJianhui LiYanping ZhengHongquan GuoLi ZhangBing YangQingqing GuHaifeng XiongYifei Sun . Dynamic tracking of exsolved PdPt alloy/perovskite catalyst for efficient lean methane oxidation. Chinese Chemical Letters, 2024, 35(4): 108585-. doi: 10.1016/j.cclet.2023.108585

    19. [19]

      Tinghui Yang Min Kuang Jianping Yang . Mesoporous CuCe dual-metal catalysts for efficient electrochemical reduction of CO2 to methane. Chinese Journal of Structural Chemistry, 2024, 43(8): 100350-100350. doi: 10.1016/j.cjsc.2024.100350

    20. [20]

      Shilong LiLiang DuanQiusheng GaoHengliang Zhang . Reduction of methane emission from microbial fuel cells during sulfamethoxazole wastewater treatment. Chinese Chemical Letters, 2025, 36(6): 110997-. doi: 10.1016/j.cclet.2025.110997

Metrics
  • PDF Downloads(0)
  • Abstract views(892)
  • HTML views(136)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return