Citation: Wang Yonghong, Lai Wenqing, Shi Haipeng, Chen Guangsheng, Zhou Lichao, Chen Xu, Liu Jingbing. Research Progress in Capacity Fading Mechanisms of Ternary Lithium Ion Batteries[J]. Chemistry, ;2020, 83(9): 785-791. shu

Research Progress in Capacity Fading Mechanisms of Ternary Lithium Ion Batteries

  • Corresponding author: Liu Jingbing, liujingbing@bjut.edu.cn
  • Received Date: 11 February 2020
    Accepted Date: 18 March 2020

Figures(3)

  • The ternary lithium ion battery mainly refers to the lithium ion battery using lithium nickel cobalt manganese oxide (NCM) or lithium nickel cobalt aluminum oxide (NCA) as the cathode electrode material. Ternary lithium ion batteries are widely used in electric vehicles, 3C electronic products and energy storage. However, the cycle life of ternary lithium ion batteries has become the biggest obstacle to its further development. Therefore, understanding the failure mechanism of ternary lithium ion battery is of great significance. The failure mechanism of ternary lithium ion battery mainly include five aspects: lattice structure change and phase transition, loss of active material, electrolyte decomposition, deintercalable lithium ion's consumption and formation of solid electrolyte interface. In this paper, the research progress in related aspects in recent years is summarized, in order to provide a more comprehensive and integrative view of capacity fading mechanisms of ternary lithium ion batteries, and the application of ternary lithium ion batteries is also prospected.
  • 加载中
    1. [1]

    2. [2]

      Gang L, Xu C, Yu Y, et al. J. Solid State Electrchem., 2018, 22(8): 1~11.

    3. [3]

    4. [4]

    5. [5]

      Liu Z L, Yu A S, Lee J Y. J. Power Sources, 1999, (81/82): 187~191.

    6. [6]

      Makimura Y, Ohzuku T. J. Power Sources, 2003, 119(6):156~160.

    7. [7]

      Kumagai N, Kim J M, Tsuruta S, et al. Electrochim. Acta, 2008, 53(16): 5287~5293. 

    8. [8]

      Whitfield P S, Davidson I J, Cranswick L, et al. Solid State Ionics, 2005, 176(5/6): 463~471.

    9. [9]

      Shaju K M, Rao G V S, Chowdari B V R. Electrochim. Acta, 2003, 48(2): 145~151.

    10. [10]

      Noh H J, Youn S, Yoon C S, et al. J. Power Sources, 2013, 233: 121~130. 

    11. [11]

      Koyama Y, Tanaka I, Adachi H, et al. J. Power Sources, 2003, 119: 644~648.

    12. [12]

      Kim J M, Chung H T. Electrochim. Acta, 2004, 49(21): 3573~3580. 

    13. [13]

      Wang X, Zhou F U, Zhao X, et al. J. Cryst. Growth, 2004, 267(1): 184~187.

    14. [14]

    15. [15]

    16. [16]

      Hendricks C, Williard N, Mathew S, et al. J. Power Sources, 2015, 297: 113~120. 

    17. [17]

       

    18. [18]

    19. [19]

      Kondo H, Takeuchi, Sasaki T, et al. J. Power Sources, 2007, 174(2): 1131~1136. 

    20. [20]

      Lei J, Mclarnon F, Kostecki R. J. Phys. Chem. B, 2005, 109(2): 952~957. 

    21. [21]

    22. [22]

      Shu J, Ma R, Shao L, et al. J. Power Sources, 2014, 245: 7~18. 

    23. [23]

      Li D C, Muta T, Zhang L Q, et al. J. Power Sources, 2004, 132(1): 150~155.

    24. [24]

      Tsai Y W, Hwang B J, Ceder G, et al. Chem. Mater., 2005, 17(12): 3191~3199. 

    25. [25]

      Ishidzu K, Oka Y, Nakamura T. Solid State Ionics, 2016, 288, 176~179.

    26. [26]

      Watanabe S, Kinoshita M, Hosokawa T, et al. J. Power Sources, 2014, 260: 50~56. 

    27. [27]

       

    28. [28]

      Wandt J, Freiberg A, Thomas R, et al. J. Mater. Chem. A, 2016, 4(47): 18193~18193. 

    29. [29]

      Shim J, Kostecki R, Richardson T, et al. J. Power Sources, 2002, 112(1): 222~230. 

    30. [30]

       

    31. [31]

      Kim H S, Kong M, Kim K, et al. J. Power Sources, 2007, 171(2):917-921. 

    32. [32]

      Liu X, Liu J, Tao H, et al. Electrochim. Acta, 2013, 109 (11): 52~58.

    33. [33]

      Zhuo L, Wu Y, Ming J, et al. J. Mater. Chem. A, 2013, 1(4): 1141~1147. 

    34. [34]

      Cho W, Kim S M, Song J H, et al. J. Power Sources, 2015, 282: 45~50. 

    35. [35]

      Hua C, Ke D, Tan C, et al. J. Alloy. Compd., 2014, 614: 264~270. 

    36. [36]

      Ning G, Haran B, Popov B N. J. Power Sources, 2003, 117(1): 160~169.

    37. [37]

      Li L, Chen Z, Song L, et al. J. Alloy. Compd., 2015, 638: 77~82. 

    38. [38]

      Zheng X, Li X, Huang Z, et al. J. Alloy. Compd., 2015, 644:607~614. 

    39. [39]

      Chen Y P, Zhang Y, Wang F, et al. J. Alloy. Compd., 2014, 611: 135~141. 

    40. [40]

      Kim G Y, Park Y J, Jung K H, et al. J. Appl. Electrochem., 2008, 38(10): 1477~1481. 

    41. [41]

      Sun Y K, Han J M, et al. Electrochem. Commun., 2006, 8: 821~826. 

    42. [42]

      Xiang J F, Yuan L J. Electrochem. Commun., 2008, 10: 1360~1363. 

    43. [43]

      Park Y, Kim N H, et al. J. Mol. Struct., 2010, 974(1/3): 139~143.

  • 加载中
    1. [1]

      Chenyue HuangHongfei ZhengNing QinCanpei WangLiguang WangJun Lu . Single-Crystal Nickel-Rich Cathode Materials: Challenges and Strategies. Acta Physico-Chimica Sinica, 2024, 40(9): 2308051-0. doi: 10.3866/PKU.WHXB202308051

    2. [2]

      Liangliang SongHaoyan LiangShunqing LiBao QiuZhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085

    3. [3]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    4. [4]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

    5. [5]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    6. [6]

      Xueyu LinRuiqi WangWujie DongFuqiang Huang . Rational Design of Bimetallic Oxide Anodes for Superior Li+ Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-0. doi: 10.3866/PKU.WHXB202311005

    7. [7]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    8. [8]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    9. [9]

      Xintong ZhuBin CaoChong YanCheng TangAibing ChenQiang Zhang . Advances in coating strategies for graphite anodes in lithium-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100096-0. doi: 10.1016/j.actphy.2025.100096

    10. [10]

      Jingshuo ZhangYue ZhaiZiyun ZhaoJiaxing HeWei WeiJing XiaoShichao WuQuan-Hong Yang . Research Progress of Functional Binders in Silicon-Based Anodes for Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306006-0. doi: 10.3866/PKU.WHXB202306006

    11. [11]

      Siyu ZhangKunhong GuBing'an LuJunwei HanJiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-0. doi: 10.3866/PKU.WHXB202309028

    12. [12]

      Ying LiYushen ZhaoKai ChenXu LiuTingfeng YiLi-Feng Chen . Rational Design of Cross-Linked N-Doped C-Sn Nanofibers as Free-Standing Electrodes towards High-Performance Li-Ion Battery Anodes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305007-0. doi: 10.3866/PKU.WHXB202305007

    13. [13]

      Aoyu HuangJun XuYu HuangGui ChuMao WangLili WangYongqi SunZhen JiangXiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2408007-0. doi: 10.3866/PKU.WHXB202408007

    14. [14]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    15. [15]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    16. [16]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    17. [17]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    18. [18]

      Jianbao MeiBei LiShu ZhangDongdong XiaoPu HuGeng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5−xMn0.5V1.5−xZrx (PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-0. doi: 10.3866/PKU.WHXB202407023

    19. [19]

      Jiaxuan ZuoKun ZhangJing WangXifei Li . Nucleation Regulation and Mechanism of Precursors for Nickel Cobalt Manganese-based Cathode Materials in Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100009-0. doi: 10.3866/PKU.WHXB202404042

    20. [20]

      Yu PengJiawei ChenYue YinYongjie CaoMochou LiaoCongxiao WangXiaoli DongYongyao Xia . Tailored cathode electrolyte interphase via ethylene carbonate-free electrolytes enabling stable and wide-temperature operation of high-voltage LiCoO2. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-0. doi: 10.1016/j.actphy.2025.100087

Metrics
  • PDF Downloads(135)
  • Abstract views(4843)
  • HTML views(1827)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return