Investigation on catalytic gasification reaction characteristics of coal char with Na2CO3
- Corresponding author: YU Guang-suo, gsyu@ecust.edu.cn
Citation:
LI Xian-yu, GUO Qing-hua, DING Lu, YU Guang-suo. Investigation on catalytic gasification reaction characteristics of coal char with Na2CO3[J]. Journal of Fuel Chemistry and Technology,
;2016, 44(12): 1422-1429.
LI Shan. Developing status and research prospect of catalysts for coal catalytic gasification[J]. J Chem Ind Eng, 2013,34(5):10-15.
GAO Xu-xia, GUO Xiao-lei, GONG Xin. Characterization of slag from entrained-flow coal gasification[J]. J East China Univ Sci Technol (Nat Sci Ed), 2009,35(5):677-683.
MENG Lei, ZHOU Min, WANG Fen. Progress of research on catalyst for catalytic gasification of coal[J]. Gas Heat, 2010,30(4):B18-B22.
POPA T, FAN M H, ARGYLE M D, SLIMANE R B, BELL D A, TOWLER B F. Catalytic gasification of a Powder River Basin coal[J]. Fuel, 2013,103:161-170. doi: 10.1016/j.fuel.2012.08.049
MONTERROSO R, FAN M H, ZHANG F, GAO Y, POPA T, ARGYLE M D, TOELER B, SUN Q Y. Effects of an environmentally-friendly, inexpensive composite iron-sodium catalyst on coal gasification[J]. Fuel, 2014,116:341-349. doi: 10.1016/j.fuel.2013.08.003
KARIMI A, GRAY M R. Effectiveness and mobility of catalysts for gasification of bitumen coke[J]. Fuel, 2011,90(1):120-125. doi: 10.1016/j.fuel.2010.07.032
WANG Y, WANG Z, HUANG J, FANG Y. Catalytic gasification activity of Na2CO3 and comparison with K2CO3 for a high-aluminum coal char[J]. Energy Fuels, 2015,29(11):6988-6998. doi: 10.1021/acs.energyfuels.5b01537
CHEN Yan, ZHANG Ji-yu. Effects of catalyst loading of Na2CO3 on specific surface area and gasification characteristics of Fujian high-metamorphous anthracite[J]. CIESC J, 2011,62(10):2768-2775.
SAMS D A, SHADMAN F. Catalytic effect of potassium on the rate of char-CO2 gasification[J]. Fuel, 1983,62(8):880-882. doi: 10.1016/0016-2361(83)90153-9
CHEN Yan, ZHANG Ji-yu. Variation of specific surface area in catalytic gasification process of Fujian anthracite with Na2CO3 catalyst[J]. CIESC J, 2012,63(8):2443-2452.
WANG Xi-ming, WANG Xing-jun, CHEN Fan-min, LIU Hai-feng, YU Guang-suo, WANG Fu-chen. Catalytic gasification kinetics of coal with steam at mid-temperature[J]. J Fuel Chem Technol, 2013,41(10):1166-1172.
PANETH H R. The mechanism of self-diffusion in alkali metals[J]. Phys Rev, 1950,80(4):708-711. doi: 10.1103/PhysRev.80.708
GODAVARTY A, AGARWAL A. Distribution and catalytic activity of eutectic salts in steam gasification of coal[J]. Energy Fuels, 2000,14(3):558-565. doi: 10.1021/ef990156o
WEI X F, HUANG J J, LIU T F, FANG Y T, WANG Y. Transformation of alkali metals during pyrolysis and gasification of a lignite[J]. Energy Fuels, 2008,22(3):1840-1844. doi: 10.1021/ef7007858
KANG Shou-guo.Study on catalytic gasification reactivity of coal char supported with K2CO3[D].Tianjin:Hebei University of Technology, 2011.
GIL M V, RIAZA J, ÁLVAREZ L, PEVIDA C, RUBIERA F. Biomass devolatilization at high temperature under N2 and CO2:Char morphology and reactivity[J]. Energy, 2015,91:655-662. doi: 10.1016/j.energy.2015.08.074
LIU H, LUO C, KANEKO M, KATO S, KOJIMA T. Unification of gasification kinetics of char in CO2 at elevated temperatures with a modified random pore model[J]. Energy Fuels, 2003,17(4):961-97. doi: 10.1021/ef020231m
Xinting XIONG , Zhiqiang XIONG , Panlei XIAO , Xuliang NIE , Xiuying SONG , Xiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
Haitang WANG , Yanni LING , Xiaqing MA , Yuxin CHEN , Rui ZHANG , Keyi WANG , Ying ZHANG , Wenmin WANG . Construction, crystal structures, and biological activities of two LnⅢ3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188
Fangxuan Liu , Ziyan Liu , Guowei Zhou , Tingting Gao , Wenyu Liu , Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071
Jingjing QING , Fan HE , Zhihui LIU , Shuaipeng HOU , Ya LIU , Yifan JIANG , Mengting TAN , Lifang HE , Fuxing ZHANG , Xiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003
Changqing MIAO , Fengjiao CHEN , Wenyu LI , Shujie WEI , Yuqing YAO , Keyi WANG , Ni WANG , Xiaoyan XIN , Ming FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192
Jing WU , Puzhen HUI , Huilin ZHENG , Pingchuan YUAN , Chunfei WANG , Hui WANG , Xiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278
Xueqi Yang , Juntao Zhao , Jiawei Ye , Desen Zhou , Tingmin Di , Jun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-. doi: 10.1016/j.actphy.2025.100074
Yue Zhao , Yanfei Li , Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001
Hong Lu , Yidie Zhai , Xingxing Cheng , Yujia Gao , Qing Wei , Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074
Guojie Xu , Fang Yu , Yunxia Wang , Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060
Yuanyi Lu , Jun Zhao , Hongshuang Li . Silver-Catalyzed Ring-Opening Minisci Reaction: Developing a Teaching Experiment Suitable for Undergraduates. University Chemistry, 2024, 39(11): 225-231. doi: 10.3866/PKU.DXHX202401088
Zhuoyan Lv , Yangming Ding , Leilei Kang , Lin Li , Xiao Yan Liu , Aiqin Wang , Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015
Hongting Yan , Aili Feng , Rongxiu Zhu , Lei Liu , Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010
Aili Feng , Xin Lu , Peng Liu , Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072
Xueting Cao , Shuangshuang Cha , Ming Gong . 电催化反应中的界面双电层:理论、表征与应用. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-. doi: 10.1016/j.actphy.2024.100041
Pengzi Wang , Wenjing Xiao , Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090
Jiajie Li , Xiaocong Ma , Jufang Zheng , Qiang Wan , Xiaoshun Zhou , Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117
Haodong JIN , Qingqing LIU , Chaoyang SHI , Danyang WEI , Jie YU , Xuhui XU , Mingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048
(a): SF-raw-4.4Na; (b): SF-4.4Na-800P; (c): SF-raw-6.6Na; (d): SF-6.6Na-800P; (e): ZY-raw-4.4Na; (f): ZY-4.4Na-800P; (g): ZY-raw-6.6Na; (h): ZY-6.6Na-800P; 1, 2, 3: different surface area of coal/char
(a): 650℃-CO2 gasification; (b): 700℃-CO2 gasification; (c): 750℃-CO2 gasification; (d): 800℃-CO2 gasification ■: SF-raw-800P; □: SF-2.2Na-800P; ▲: SF-4.4Na-800P; △: SF-6.6Na-800P; ▼: ZY-raw-800P; ▽: ZY-2.2Na-800P; ●: ZY-4.4Na-800P; ○: ZY-6.6Na-800P
(a): 650℃-H2O gasification; (b): 700℃-H2O gasification; (c): 750℃-H2O gasification; (d): 800℃-H2O gasification ■: SF-raw-800P; □: SF-2.2Na-800P; ▲: SF-4.4Na-800P; △: SF-6.6Na-800P; ▼: ZY-raw-800P; ▽: ZY-2.2Na-800P; ●: ZY-4.4Na-800P; ○: ZY-6.6Na-800P
■: SF-2.2Na-800P-CO2;
●: SF-4.4Na-800P-CO2;
▲: SF-6.6Na-800P-CO2;