Citation: LI Xian-yu, GUO Qing-hua, DING Lu, YU Guang-suo. Investigation on catalytic gasification reaction characteristics of coal char with Na2CO3[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(12): 1422-1429. shu

Investigation on catalytic gasification reaction characteristics of coal char with Na2CO3

  • Corresponding author: YU Guang-suo, gsyu@ecust.edu.cn
  • Received Date: 23 August 2016
    Revised Date: 1 October 2016

Figures(5)

  • The coal char gasification experiments with Na2CO3 as catalyst was investigated on TGA. The pore structure and apparent structure evolution characteristics of char were studied by scanning electron microscopy and pore structure and specific surface area analyzer. The influence of temperature (650-800℃), gasification agent (steam, CO2) and sodium carbonate loadings (Na+ loading amounts 2.2%, 4.4%, 6.6%) on the gasification reactivity of Shenfu bituminous coal (SF) and Zunyi anthracite (ZY) were investigated. The results show that the loading of Na2CO3 stimulates the development of pore structure in pyrolysis process. In the atmosphere of CO2, there was a saturated catalyst capacity for SF and excessive catalyst loading could block internal pore structure of coal, leading to the decrease of gasification reactivity. ZY gasification reactivity increases with catalyst loading, and both SF and ZY gasification reactivity increase with the increase of temperature. In the atmosphere of steam, both SF and ZY gasification reactivity increase with the rise of catalyst loading and temperature. Na2CO3 is favorable for the decrease of reaction temperature and activation energy under the desired gasification rate.
  • 加载中
    1. [1]

      LI Shan. Developing status and research prospect of catalysts for coal catalytic gasification[J]. J Chem Ind Eng, 2013,34(5):10-15.  

    2. [2]

      GAO Xu-xia, GUO Xiao-lei, GONG Xin. Characterization of slag from entrained-flow coal gasification[J]. J East China Univ Sci Technol (Nat Sci Ed), 2009,35(5):677-683.  

    3. [3]

      MENG Lei, ZHOU Min, WANG Fen. Progress of research on catalyst for catalytic gasification of coal[J]. Gas Heat, 2010,30(4):B18-B22.  

    4. [4]

      POPA T, FAN M H, ARGYLE M D, SLIMANE R B, BELL D A, TOWLER B F. Catalytic gasification of a Powder River Basin coal[J]. Fuel, 2013,103:161-170. doi: 10.1016/j.fuel.2012.08.049

    5. [5]

      MONTERROSO R, FAN M H, ZHANG F, GAO Y, POPA T, ARGYLE M D, TOELER B, SUN Q Y. Effects of an environmentally-friendly, inexpensive composite iron-sodium catalyst on coal gasification[J]. Fuel, 2014,116:341-349. doi: 10.1016/j.fuel.2013.08.003

    6. [6]

      KARIMI A, GRAY M R. Effectiveness and mobility of catalysts for gasification of bitumen coke[J]. Fuel, 2011,90(1):120-125. doi: 10.1016/j.fuel.2010.07.032

    7. [7]

      WANG Y, WANG Z, HUANG J, FANG Y. Catalytic gasification activity of Na2CO3 and comparison with K2CO3 for a high-aluminum coal char[J]. Energy Fuels, 2015,29(11):6988-6998. doi: 10.1021/acs.energyfuels.5b01537

    8. [8]

      CHEN Yan, ZHANG Ji-yu. Effects of catalyst loading of Na2CO3 on specific surface area and gasification characteristics of Fujian high-metamorphous anthracite[J]. CIESC J, 2011,62(10):2768-2775.

    9. [9]

      SAMS D A, SHADMAN F. Catalytic effect of potassium on the rate of char-CO2 gasification[J]. Fuel, 1983,62(8):880-882. doi: 10.1016/0016-2361(83)90153-9

    10. [10]

      CHEN Yan, ZHANG Ji-yu. Variation of specific surface area in catalytic gasification process of Fujian anthracite with Na2CO3 catalyst[J]. CIESC J, 2012,63(8):2443-2452.

    11. [11]

      WANG Xi-ming, WANG Xing-jun, CHEN Fan-min, LIU Hai-feng, YU Guang-suo, WANG Fu-chen. Catalytic gasification kinetics of coal with steam at mid-temperature[J]. J Fuel Chem Technol, 2013,41(10):1166-1172.  

    12. [12]

      PANETH H R. The mechanism of self-diffusion in alkali metals[J]. Phys Rev, 1950,80(4):708-711. doi: 10.1103/PhysRev.80.708

    13. [13]

      GODAVARTY A, AGARWAL A. Distribution and catalytic activity of eutectic salts in steam gasification of coal[J]. Energy Fuels, 2000,14(3):558-565. doi: 10.1021/ef990156o

    14. [14]

      WEI X F, HUANG J J, LIU T F, FANG Y T, WANG Y. Transformation of alkali metals during pyrolysis and gasification of a lignite[J]. Energy Fuels, 2008,22(3):1840-1844. doi: 10.1021/ef7007858

    15. [15]

      KANG Shou-guo.Study on catalytic gasification reactivity of coal char supported with K2CO3[D].Tianjin:Hebei University of Technology, 2011.

    16. [16]

      GIL M V, RIAZA J, ÁLVAREZ L, PEVIDA C, RUBIERA F. Biomass devolatilization at high temperature under N2 and CO2:Char morphology and reactivity[J]. Energy, 2015,91:655-662. doi: 10.1016/j.energy.2015.08.074

    17. [17]

      LIU H, LUO C, KANEKO M, KATO S, KOJIMA T. Unification of gasification kinetics of char in CO2 at elevated temperatures with a modified random pore model[J]. Energy Fuels, 2003,17(4):961-97. doi: 10.1021/ef020231m

  • 加载中
    1. [1]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    2. [2]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    3. [3]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    4. [4]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    5. [5]

      Fangxuan Liu Ziyan Liu Guowei Zhou Tingting Gao Wenyu Liu Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071

    6. [6]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    7. [7]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    8. [8]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    9. [9]

      Xueqi Yang Juntao Zhao Jiawei Ye Desen Zhou Tingmin Di Jun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-. doi: 10.1016/j.actphy.2025.100074

    10. [10]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    11. [11]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    12. [12]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    13. [13]

      Yuanyi Lu Jun Zhao Hongshuang Li . Silver-Catalyzed Ring-Opening Minisci Reaction: Developing a Teaching Experiment Suitable for Undergraduates. University Chemistry, 2024, 39(11): 225-231. doi: 10.3866/PKU.DXHX202401088

    14. [14]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    15. [15]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    16. [16]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    17. [17]

      Xueting Cao Shuangshuang Cha Ming Gong . 电催化反应中的界面双电层:理论、表征与应用. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-. doi: 10.1016/j.actphy.2024.100041

    18. [18]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    19. [19]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    20. [20]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

Metrics
  • PDF Downloads(2)
  • Abstract views(760)
  • HTML views(75)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return