Citation: Lin Yanan, Zhang Chongrong, Dong Wenhao, Zhang Shuyong. Kinetics and Mechanism of Solution Reaction-2: Influential Factors and General Form of Kinetic Equation[J]. Chemistry, ;2016, 79(12): 1204-1208. shu

Kinetics and Mechanism of Solution Reaction-2: Influential Factors and General Form of Kinetic Equation

  • Corresponding author: Zhang Shuyong, 
  • Received Date: 25 April 2016
    Available Online: 30 June 2016

  • The influential factors for the rate of reactions occurring in solution which is different from those occurring in gaseous phase are discussed. The perception that the presence of solvent molecules will cause a significant decrease in the collision frequency between reactant molecules is proved incorrect. Except for the changes in activity of reactants and the catalysis due to the presence of solvent, solvent effect and micro-viscosity are found to be the two main factors affecting the rate of the solution reactions. The micro-viscosity is either of positive value due to the interaction between reactants and solvent molecules or of negative value due to the small molar mass of solvent which moves with higher speed. Based on the simple collision theory and transition state theory, a general kinetic equation correlating the change in reaction rate to the change in activation energy and micro-viscosity is proposed. Base on this equation, more satisfactory explanations to the experimental facts can be given.
  • 加载中
    1. [1]

      [1] 傅献彩, 姚天扬, 沈文霞等. 物理化学(第五版). 北京: 高等教育出版社, 2007.

    2. [2]

      [2] Y Hu. Physical Chemistry (2nd Ed.), Beijing, Higher Education Press, 2013.

    3. [3]

      [3] I N Levine. Physical Chemistry (5thEd.), McGraw Hill Press House, 2002.

    4. [4]

      [4] R Chang. Physical Chemistry for the Chemical and Biological Science, University Science Books, 2000.

    5. [5]

      [5] P Atkins, J de Paula. Physical Chemistry (7th Ed.), Oxford University Press, 2002.

    6. [6]

      [6] E Grunwald, K C Chang, J E Leffler. Ann. Rev. Phys. Chem., 1976, 27: 369~385.

    7. [7]

      [7] K A Swiss, R A Firestone. J. Phys. Chem.A, 1999, 103(27): 5369~5372.

    8. [8]

      [8] S Goldstein, G Czapski. J. Am. Chem. Soc., 1999, 121(11): 2444~2447.

    9. [9]

      [9] A Kumar, S Pawar. Sci. China Chem., 2012, 55(8): 1633~1637.

    10. [10]

      [10] J Katzer, W Pauer, H U Moritz. Macromol. React. Eng., 2012, 6(5): 213~224.

    11. [11]

      [11] G van der Zwan, J T Hynes. J. Chem. Phys., 1983, 78(6): 4174~4185.

    12. [12]

      [12] E del Rio, P Aplincourt, M F Ruiz-Lopez. Chem. Phys. Lett., 1997, 280(5~6): 444~450.

    13. [13]

      [13] M Orozco, F J Luque. Chem. Rev., 2000, 100(11): 4187~4225.

    14. [14]

      [14] M Orozco, F J Luque, D Habibollahzadeh et al. J. Chem. Phys., 1995, 102(15): 6145~6152.

    15. [15]

      [15] R G Makitra, N M Karpyak, G G Midyana et al. Rus. J. Gen. Chem., 2010, 80(9): 1786~1791.

    16. [16]

      [16] R Bini, C Chiappe, V L Mestre et al. Org. Biomol. Chem., 2008, 6(14): 2522~2529.

    17. [17]

      [17] A Kumar, D Sarma. ACS Symp. Ser., 2005, 902: 350~370.

    18. [18]

      [18] C Chiappe, D Pieraccini. J. Org. Chem., 2004, 69(18): 6059~6064.

    19. [19]

      [19] 赵学庄, 罗渝然, 臧雅茹等. 化学反应动力学原理. 北京: 高等教育出版社, 1990, 789.

    20. [20]

      [20] K H Kim, J Kim, J H Lee et al. Struct. Dyn., 2014, 1(1): 011301.

    21. [21]

      [21] W Q Wu, C F Yang, H M Zhao et al. J. Chem. Phys., 2010, 132(12): 124510.

    22. [22]

      [22] B Sipp, R Voltz. J. Chem. Phys., 1985, 83(1): 157~165.

    23. [23]

      [23] M Orozco, C Colominas, F J Luque. Chem. Phys., 1996, 209(1): 19~29.

    24. [24]

      [24] A Kumar, S S Deshpande. J. Org. Chem., 2003, 68(13): 5411~5414.

    25. [25]

      [25] A F Olea, J K Thomas. J. Am. Chem. Soc., 1988, 110: 4494~4502.

  • 加载中
    1. [1]

      Nengmin ZHUWenhao ZHUXiaoyao YINSongzhi ZHENGHao LIZeyuan WANGWenhao WEIXuanheng CHENWeihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419

    2. [2]

      Chuan′an DINGWeibo YANShaoying WANGHao XIN . Preparation of wide-band gap copper indium gallium sulfide solar cells by solution method. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1755-1764. doi: 10.11862/CJIC.20250198

    3. [3]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    4. [4]

      Yanglin JiangMingqing ChenMin LiangYige YaoYan ZhangPeng WangJianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 2309027-0. doi: 10.3866/PKU.WHXB202309027

    5. [5]

      Ying Zhang Fang Ge Zhimin Luo . AI-Driven Biochemical Teaching Research: Predicting the Functional Effects of Gene Mutations. University Chemistry, 2025, 40(3): 277-284. doi: 10.12461/PKU.DXHX202412104

    6. [6]

      Yujia Luo Yunpeng Qi Huiping Xing Yuhu Li . The Use of Viscosity Method for Predicting the Life Expectancy of Xuan Paper-based Heritage Objects. University Chemistry, 2024, 39(8): 290-294. doi: 10.3866/PKU.DXHX202401037

    7. [7]

      Chao LiuHuan YuJiaming LiXi YuZhuangzhi YuYuxi SongFeng ZhangQinfang ZhangZhigang Zou . 具有光热效应的多级Ti3C2/Bi12O17Br2肖特基异质结简单合成及其太阳能驱动抗生素光降解的研究. Acta Physico-Chimica Sinica, 2025, 41(7): 100075-0. doi: 10.1016/j.actphy.2025.100075

    8. [8]

      Tianqi BaiKun HuangFachen LiuRuochen ShiWencai RenSongfeng PeiPeng GaoZhongfan Liu . Nanoscale Mechanism of Microstructure-Dependent Thermal Diffusivity in Thick Graphene Sheets. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-0. doi: 10.3866/PKU.WHXB202404024

    9. [9]

      Linlin Wu Yonghua Zhou Zhongbei Li Liu Deng Younian Liu Limiao Chen Jianhan Huang . Digital Education Promoting Applied Chemistry Comprehensive Experiments: A Case Study of Catalytic Oxidation of Hydrogen Chloride and Reaction Kinetics. University Chemistry, 2025, 40(9): 273-278. doi: 10.12461/PKU.DXHX202411018

    10. [10]

      Chengshan Yuan Xiaolong Li Xiuping Yang Xiangfeng Shao Zitong Liu Xiaolei Wang Yongwen Shen . Standardized Operational Guidelines for Mixed-Solvent Recrystallization in Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 122-127. doi: 10.12461/PKU.DXHX202504073

    11. [11]

      Cuicui Yang Bo Shang Xiaohua Chen Weiquan Tian . Understanding the Wave-Particle Duality and Quantization of Confined Particles Starting from Classic Mechanics. University Chemistry, 2025, 40(3): 408-414. doi: 10.12461/PKU.DXHX202407066

    12. [12]

      Yang Wang Yunpeng Fu Xiaoji Liu Guotao Zhang Guobin Li Wanqiang Liu Jinglun Wang . Structural Analysis of Nitrile Solutions Based on Infrared Spectroscopy Probes. University Chemistry, 2025, 40(4): 367-374. doi: 10.12461/PKU.DXHX202406113

    13. [13]

      Tiantian Dai Xi Yang . Teaching Design and Reflection on the “Osmotic Pressure of Solutions” in Medical Chemistry. University Chemistry, 2025, 40(5): 268-275. doi: 10.12461/PKU.DXHX202411032

    14. [14]

      Yan Zhang Xiaoyan Cao Yiming Li Shuwei Xia Mutai Bao . Comparison of Electrolyte Solutions Section in Physical Chemistry Textbooks at Home and Abroad. University Chemistry, 2025, 40(9): 303-309. doi: 10.12461/PKU.DXHX202502027

    15. [15]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    16. [16]

      Jiandong LiuXin LiDaxiong WuHuaping WangJunda HuangJianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039

    17. [17]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    18. [18]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    19. [19]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    20. [20]

      Xingyuan Lu Yutao Yao Junjing Gu Peifeng Su . Energy Decomposition Analysis and Its Application in the Many-Body Effect of Water Clusters. University Chemistry, 2025, 40(3): 100-107. doi: 10.12461/PKU.DXHX202405074

Metrics
  • PDF Downloads(2)
  • Abstract views(707)
  • HTML views(190)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return