Citation:
Li Xiaolu, Guo Jing, Zhai Qian, Yi Gang. The Applications of Isothermal Nucleic Acid Amplification Technique in Electrochemical Biosensors[J]. Chemistry,
;2016, 79(12): 1127-1133.
-
The detection of biomolecules in the fields of clinical diagnosis, gene therapy and mutation analysis has become increasingly important. Therefore, it is significant for establishing a simple, rapid and sensitive detection method. Electrochemical biosensor has gained increasing interest because of its advantages such as simplicity, portability, easy to operate and low cost in the field of biomolecules detection. In order to improve the sensitivity of biosensors, different isothermal nucleic acid amplification techniques have been used in the construction of electrochemical biosensors. In this paper, we introduced the principle of electrochemical sensor briefly, summarize the main isothermal nucleic acid amplification techniques applied in electrochemical biosensors emphatically and compare the advantages and disadvantages of each technique.
-
-
-
[1]
[1] G T Walker, M C Little, J G Nadeau et al. PNAS, 1992, 89(1): 392~396.
-
[2]
[2] J L He, Z S Wu, H Zhou et al. Anal. Chem., 2010, 82(4): 1358~1364.
-
[3]
[3] Q Chen, Z Bian, M Chen et al. Biosens. Bioelectron., 2009, 24(12): 3412~3418.
-
[4]
[4] C Yang, K Shi, B Dou et al. ACS Appl. Mater. Interf., 2015, 7(2): 1188~1193.
-
[5]
[5] W Ma, B Situ, W Lv et al. Biosens. Bioelectron., 2016, 80: 344~351.
-
[6]
[6] T Murakami, J Sumaoka, M Komiyama. Nucleic. Acids Res., 2009, 37(3): e19~e19.
-
[7]
[7] M M Ali, F Li, Z Zhang et al. Chem. Soc. Rev., 2014, 43(10): 3324~3341.
-
[8]
[8] Z S Wu, H Zhou, S Zhang et al. Anal. Chem., 2010, 82(6): 2282~2289.
-
[9]
[9] C Ding, N Wang, J Zhang et al. Biosens. Bioelectron., 2013, 42: 486~491.
-
[10]
[10] Y Guo, Y Wang, S Liu et al. Biosens. Bioelectron., 2016, 75: 315~319.
-
[11]
[11] Q Wang, H Zheng, X Gao et al. Chem. Commun., 2013, 49(97): 11418~11420.
-
[12]
[12] L Yang, Y Zhang, R Li et al. Biosens. Bioelectron., 2015, 70: 268~274.
-
[13]
[13] Q Wang, C Yang, Y Xiang et al. Biosens. Bioelectron., 2014, 55: 266~271.
-
[14]
[14] S Bi, T Zhao, B Luo et al. Chem. Commun., 2013, 49(61): 6906~6908.
-
[15]
[15] W Cheng, W Zhang, Y Yan et al. Biosens. Bioelectron., 2014, 62: 274~279.
-
[16]
[16] T Notomi, H Okayama, H Masubuchi et al. Nucleic. Acids Res., 2000, 28(12): e63~e63.
-
[17]
[17] M U Ahmed, M Saito, M M Hossain et al. Analyst, 2009, 134(5): 966~972.
-
[18]
[18] W Sun, P Qin, H Gao et al. Biosens. Bioelectron., 2010, 25(6): 1264~1270.
-
[19]
[19] S Xie, Y Chai, Y Yuan et al. Biosens. Bioelectron., 2014, 55: 324~329.
-
[20]
[20] N Nakamura, K Ito, M Takahashi et al. Anal. Chem., 2007, 79(24): 9484~9493.
-
[21]
[21] J Li, J Macdonald. Biosens. Bioelectron., 2015, 64: 196~211.
-
[22]
[22] S Moura-Melo, R Miranda-Castro, N de-los-Santos-Álvarez et al. Anal. Chem., 2015, 87(16): 8547~8554.
-
[23]
[23] L An, W Tang, T A Ranalli et al. J. Biol. Chem., 2005, 280(32): 28952~28958.
-
[24]
[24] P Gill, M Amini, A Ghaemi et al. Diagn. Microbiol. Infect. Dis., 2007, 59(3): 243~249.
-
[25]
[25] E Torres-Chavolla, E C Alocilja. Biosens. Bioelectron., 2011, 26(11): 4614~4618.
-
[26]
[26] S Barreda-García, M J González-Álvarez, N de-los-Santos-Álvarez et al. Biosens. Bioelectron., 2015, 68: 122~128.
-
[27]
[27] C Lin, Y Wu, F Luo et al. Biosens. Bioelectron., 2014, 59: 365~369.
-
[28]
[28] X Zuo, F Xia, Y Xiao et al. J. Am. Chem. Soc., 2010, 132(6): 1816~1818.
-
[29]
[29] S Liu, Y Wang, C Zhang et al. Chem. Commun., 2013, 49(23): 2335~2337.
-
[30]
[30] D Wu, B C Yin, B C Ye. Biosens. Bioelectron., 2011, 28(1): 232~238.
-
[31]
[31] S Liu, C Wang, C Zhang et al. Anal. Chem., 2013, 85(4): 2282~2288.
-
[32]
[32] F Xuan, X Luo, I M Hsing. Anal. Chem., 2012, 84(12): 5216~5220.
-
[33]
[33] R M Dirks, N A Pierce. PNAS, 2004, 101(43): 15275~15278.
-
[34]
[34] D Evanko. Nat. Methods, 2004, 1(3): 186~187.
-
[35]
[35] J Zhou, M Xu, D Tang et al. Chem. Commun., 2012, 48(100): 12207~12209.
-
[36]
[36] Y Qian, F Gao, L Du et al. Biosens. Bioelectron., 2015, 74: 483~490.
-
[37]
[37] S Liu, Y Wang, J Ming et al. Biosens. Bioelectron., 2013, 49: 472~477.
-
[38]
[38] F Xuan, I M Hsing. J. Am. Chem. Soc., 2014, 136(28): 9810~9813.
-
[39]
[39] L Jia, S Shi, R Ma et al. Biosens. Bioelectron., 2016, 80: 392~397.
-
[1]
-
-
-
[1]
Yang Meiqing , Lu Wang , Haozi Lu , Yaocheng Yang , Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 2310046-0. doi: 10.3866/PKU.WHXB202310046
-
[2]
Jinghan ZHANG , Guanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249
-
[3]
Qiaoqiao BAI , Anqi ZHOU , Xiaowei LI , Tang LIU , Song LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128
-
[4]
Jiarong Feng , Yejie Duan , Chu Chu , Dezhen Xie , Qiu'e Cao , Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016
-
[5]
Ke Zhao , Zhen Liu , Luyao Liu , Changyuan Yu , Jingshun Pan , Xuguang Huang . Functionalized Reflective Structure Fiber-Optic Interferometric Sensor for Trace Detection of Lead Ions. Acta Physico-Chimica Sinica, 2024, 40(4): 2304029-0. doi: 10.3866/PKU.WHXB202304029
-
[6]
Jia-He Li , Yu-Ze Liu , Jia-Hui Ma , Qing-Xiao Tong , Jian-Ji Zhong , Jing-Xin Jian . 洛芬碱衍生物的合成、化学发光与重金属离子检测. University Chemistry, 2025, 40(6): 230-237. doi: 10.12461/PKU.DXHX202407080
-
[7]
Xiaowei TANG , Shiquan XIAO , Jingwen SUN , Yu ZHU , Xiaoting CHEN , Haiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173
-
[8]
Xiaofei Liu , He Wang , Li Tao , Weimin Ren , Xiaobing Lu , Wenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008
-
[9]
Zhuomin Zhang , Lanrui Yang , Baorong Zhang , Gongke Li . 化学分析全英课程思政建设初探. University Chemistry, 2025, 40(8): 58-65. doi: 10.12461/PKU.DXHX202410010
-
[10]
Shuhui Li , Xucen Wang , Yingming Pan . Exploring the Role of Electrochemical Technologies in Everyday Life. University Chemistry, 2025, 40(3): 302-307. doi: 10.12461/PKU.DXHX202406059
-
[11]
. . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.
-
[12]
Cen Zhou , Biqiong Hong , Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086
-
[13]
Weigang Zhu , Xiaofei Ma , Yun Tian , Huaji Liu , Fanli Lu , Yalu Ma . 基于知识图谱的“无机化学与化学分析”课程信息化教学资源构建与应用研究. University Chemistry, 2025, 40(6): 9-15. doi: 10.12461/PKU.DXHX202408113
-
[14]
Tingting Jiang , Jing Chang . Application of Ideological and Political Education in Chemical Analysis Experiment under the Background of Emerging Engineering Education: Taking the Redox Titration Experiment as an Example. University Chemistry, 2024, 39(2): 168-174. doi: 10.3866/PKU.DXHX202308007
-
[15]
Cun WANG , Shaohan XU , Yuqian ZHANG , Yaoyao ZHANG , Tao GONG , Rong WEN , Yuhang LIAO , Yanrong REN . Terbium complex electrochemiluminescent emitters: Synthesis and application in the detection of epinephrine. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1351-1360. doi: 10.11862/CJIC.20240427
-
[16]
Xingchao Zhao , Xiaoming Li , Ming Liu , Zijin Zhao , Kaixuan Yang , Pengtian Liu , Haolan Zhang , Jintai Li , Xiaoling Ma , Qi Yao , Yanming Sun , Fujun Zhang . Photomultiplication-Type All-Polymer Photodetectors and Their Applications in Photoplethysmography Sensor. Acta Physico-Chimica Sinica, 2025, 41(1): 100007-0. doi: 10.3866/PKU.WHXB202311021
-
[17]
Yang Liu , Peng Chen , Lei Liu . Chemistry “101 Plan”: Design and Construction of Chemical Biology Textbook. University Chemistry, 2024, 39(10): 45-51. doi: 10.12461/PKU.DXHX202407085
-
[18]
Tianyu Feng , Guifang Jia , Peng Zou , Jun Huang , Zhanxia Lü , Zhen Gao , Chu Wang . Construction of the Chemistry Biology Experiment Course in the Chemistry “101 Program”. University Chemistry, 2024, 39(10): 69-77. doi: 10.12461/PKU.DXHX202409002
-
[19]
Jianfeng Yan , Yating Xiao , Xin Zuo , Caixia Lin , Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005
-
[20]
Zhibei Qu , Changxin Wang , Lei Li , Jiaze Li , Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(411)
- HTML views(59)