Citation: Li Yan, Zhang Shuhua, Zhong Fuxin, Zhang Xiuqing. Research Advances on Applications of Tetra(2-pyridyl) Pyrazine Metal Complexes[J]. Chemistry, ;2016, 79(12): 1121-1126,1112. shu

Research Advances on Applications of Tetra(2-pyridyl) Pyrazine Metal Complexes

  • Corresponding author: Zhang Xiuqing, 
  • Received Date: 6 April 2016
    Available Online: 27 June 2016

    Fund Project:

  • 2,3,5,6-tetra(2-pyridyl) pyrazine (tppz) is one of the most fascinating molecules in terpyridine analogues. Investigation of tppz complexes is very important because of their potential applications in many areas such as molecular electronics, biochemistry, magnetics, catalysis and molecular sensors. The research advances of tppz complexes on the field of application in the past decade are reviewed.
  • 加载中
    1. [1]

      [1] Y Gao, D Rajwar, A C Grimsdale. Macromol. Rapid. Commun., 2014, 35: 1727~1740.

    2. [2]

      [2] V Balzani, A Juris, M Venturi et al. Chem. Rev., 1996, 96: 759~833.

    3. [3]

      [3] A Wild, A Winter, F Schlutter et al. Chem. Soc. Rev., 2011, 40: 1459~1511.

    4. [4]

      [4] E C Constable. Coord. Chem. Rev., 2008, 252: 842~855.

    5. [5]

      [5] M T Behnamfar, H Hadadzadeh, J Simpson et al. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 134: 502~516.

    6. [6]

      [6] H A Goodwin, F Lions. J. Am. Chem. Soc., 1959, 81: 6415~6422.

    7. [7]

      [7] J Palion-Gazda, A Switlicka-Olszewska, B Machura et al. Inorg. Chem., 2014, 53: 10009~10011.

    8. [8]

      [8] C W Padgett, W T Pennington, T W Hanks. Cryst. Growth Des., 2005, 5: 737~744.

    9. [9]

      [9] C W Padgett, R D Walsh, G W Drak et al. Cryst. Growth Des., 2005, 5: 745~753.

    10. [10]

      [10] A S Saljooghi, H A Rudbari, F Nicolo et al. Russ. J. Coord. Chem., 2014, 40: 424~431.

    11. [11]

      [11] L M Callejo, G Madariaga, L Lezama et al. Inorg. Chem., 2010, 49: 5353~5355.

    12. [12]

      [12] B Machura, J Palion, J Mroziński et al. Polyhedron, 2013, 53: 132~143.

    13. [13]

      [13] H G Yu. J. Phys. Chem. A, 2014, 118: 5400~5406.

    14. [14]

      [14] R Padilla, R R Ruminski, V A McGinley et al. Polyhedron, 2012, 33: 158~165.

    15. [15]

      [15] S Demir, M Nippe, M I Gonzalez et al. Chem. Sci., 2014, 5: 4701~4711.

    16. [16]

      [16] J Luo, L J Qiu, B S Liu et al. Chin. J. Chem., 2012, 30: 522~528.

    17. [17]

      [17] A Velázquez-Palenzuelaa, L Zhanga, L C Wang et al. Electrochim. Acta, 2011, 56: 4744~4752.

    18. [18]

      [18] A Velazquez-Palenzuela, L Zhang, L C Wang et al. J. Phys. Chem. C, 2011, 115: 12929~12940.

    19. [19]

      [19] G F Manbeck, K J Brewer. Coord. Chem. Rev., 2013, 257: 1660~1675.

    20. [20]

      [20] I Nawrot, B Machura, R Kruszynski. CrystEngComm., 2015, 17: 830~845.

    21. [21]

      [21] M J Sun, H J Nie, J N Yao et al. Chin. Chem. Lett., 2015, 26: 649~652.

    22. [22]

      [22] A J Prussin, S Zhao, A Jain et al. J. Inorg. Biochem., 2009, 103: 427~431.

    23. [23]

      [23] K Ha. Z. Krist-New Cryst. St., 2011, 226: 518~520.

    24. [24]

      [24] K Ha. Z. Krist-New Cryst. St., 2011, 226: 509~510.

    25. [25]

      [25] K Ha. Z. Krist-New Cryst. St., 2011, 226: 59~60.

    26. [26]

      [26] K Ha. Acta Crystallogr. Sect. E, Struct. Rep. Online, 2011, 67: M1333~U1293.

    27. [27]

      [27] L Callejo, N la Pinta, P Vitoria et al. Acta Crystallogr. Sect. E, Struct. Rep. Online, 2009, 65: M68~U742.

    28. [28]

      [28] B Machura, M Wolff, I Gryca. Inorg. Chem. Commun., 2010, 13: 904~908.

    29. [29]

      [29] X Y Chen, F J Femia, J W Babich et al. Inorg. Chim. Acta, 2001, 315: 66~72.

    30. [30]

      [30] L Callejo, N De la Pinta, G Madariaga et al. Acta Crystallogr. Sect. E, Struct. Rep. Online, 2010, 66: M249~U3089.

    31. [31]

      [31] W A Alves, V Pfaffen, P I Ortiz et al. J. Brazil. Chem. Soc., 2008, 19: 651~659.

    32. [32]

      [32] L M Toma, D Armentano, G De Munno et al. Polyhedron, 2007, 26: 5263~5270.

    33. [33]

      [33] N Motokawa, Y Maeda, S Hayami. Acta Crystallogr. Sect. E, Struct. Rep. Online, 2007, 63: M1521~U1505.

    34. [34]

      [34] W A Alves, P A Fiorito, S I C de Torresi et al. Biosens. Bioelectron., 2006, 22: 298~305.

    35. [35]

      [35] R R Ruminski, J L Kiplinger. Inorg. Chem., 1990, 29: 4581~4584.

    36. [36]

      [36] T Nagashima, T Nakabayashi, T Suzuki et al. Organometallics, 2014, 33: 4893~4904.

    37. [37]

      [37] S W Jones, L M Vrana, K J Brewer. J. Organomet. Chem., 1998, 554: 29~40.

    38. [38]

      [38] L M Vogler, K J Brewer. Inorg. Chem., 1996, 35: 818~824.

    39. [39]

      [39] C J Yao, Y W Zhong, J Yao. Inorg. Chem., 2013, 52: 4040~4045.

    40. [40]

      [40] C R Arana, H D Abruna. Inorg. Chem., 1993, 32: 194~203.

    41. [41]

      [41] Y Okamoto, K Ogura, T Kinoshita. Polyhedron, 1984, 3: 635~638.

    42. [42]

      [42] E C Constable, A J Edwards, D Phillips et al. Supramol. Chem., 1995, 5: 93~95.

    43. [43]

      [43] G Y Hsu, C W Chen, S C Cheng et al. Polyhedron, 2005, 24: 487~494.

    44. [44]

      [44] H Hadadzadeh, S R Hosseinian, S J A Fatemi. Polyhedron, 2009, 28: 2776~2784.

    45. [45]

      [45] J K Bera, C S Campos-Fernandez, R Clerac et al. Chem. Commun., 2002, 2536~2537.

    46. [46]

      [46] R R Ruminski, C Letner. Inorg. Chim. Acta, 1989, 162: 175~177.

    47. [47]

      [47] M Maekawa, T Minematsu, H Konaka et al. Inorg. Chim. Acta, 2004, 357: 3456~3472.

    48. [48]

      [48] L M Vogler, B Scott, K J Brewer. Inorg. Chem., 1993, 898~903.

    49. [49]

      [49] F H Haghighi, H Hadadzadeh, F Darabi et al. Polyhedron, 2013, 65: 16~30.

    50. [50]

      [50] N De la Pinta, M L Fidalgo, J M Ezpeleta et al. Acta Crystallogr. Sect. E, Struct. Rep. Online, 2011, 67: M129~U1315.

    51. [51]

      [51] P De Burgomaster, J Zubieta. Acta Crystallogr. Sect. E, Struct. Rep. Online, 2010, 66: M1424~U1822.

    52. [52]

      [52] M Koman, Z Baloghova, D Valigura. Acta Crystallogr. Sect. C, Cryst. Struct. Commun., 1998, 54:1277~1279.

    53. [53]

      [53] M Graf, H StoeckliEvans, A Escuer et al. Inorg. Chim. Acta, 1997, 257: 89~97.

    54. [54]

      [54] M S Khakhalina, M V Puzyk, K P Balashev. Opt. Spectrosc., 2008, 105: 352~355.

    55. [55]

      [55] A Morsali, A Ramazani. Z. Anorg. Allg. Chem., 2005, 631: 1759~1760.

    56. [56]

      [56] Y Yamada, Y Miyashita, K Fujisawa et al. Bull. Chem. Soc. Jpn., 2000, 73, 1843~1844.

    57. [57]

      [57] P von Grebe, K Suntharalingam, R Vilar et al. Chem. Eur. J., 2013, 19: 11429~11438.

    58. [58]

      [58] S Rubino, P Portanova, A Girasolo et al. Eur. J. Med. Chem., 2009, 44: 1041~1048.

    59. [59]

      [59] R S Bitzer, R A S San Gil, C A L Filgueiras. J. Brazil. Chem. Soc., 2006, 17: 1600~1604.

    60. [60]

      [60] K Sakai, M Kurashima. Acta Crystallogr. Sect. E, Struct. Rep. Online, 2003, 59: M411~M413.

    61. [61]

      [61] W M Teles, N L Speziali, C A L Filgueiras. Polyhedron, 2000, 19: 739~742.

    62. [62]

      [62] M Trivedi, D S Pandey, N P Rath. Inorg. Chim. Acta, 2009, 362: 284~290.

    63. [63]

      [63] E F Zhilina, D L Chizhov, A A Sidorov et al. Polyhedron, 2013, 53: 122~131.

    64. [64]

      [64] B Machura, A Switlicka, J Palion et al. Struct. Chem., 2013, 24: 89~96.

    65. [65]

      [65] C Yuste, L Canadillas-Delgado, C Ruiz-Perez et al. Dalton Transac., 2010, 39: 167~179.

    66. [66]

      [66] C Yuste, D Armentano, N Marino et al. Dalton Transac., 2008, 1583~1596.

    67. [67]

      [67] E Burkholder, W Ouellette, J Zubieta. Inorg. Chim. Acta, 2006, 359: 261~266.

    68. [68]

      [68] H Hadadzadeh, A R Rezvani, G P A Yap et al. Inorg. Chim. Acta, 2005, 358: 1289~1292.

    69. [69]

      [69] J Carranza, J Sletten, C Brennan et al. Dalton Transac., 2004, 3997~4005.

    70. [70]

      [70] J Carranza, C Brennan, J Sletten et al. Inorg. Chem., 2003, 42: 8716~8727.

    71. [71]

      [71] J Kozisek, J Marek, Z Baloghova et al. Acta Crystallogr. Sect. C, Cryst. Struct. Commun., 1997, 53: 1813~1815.

    72. [72]

      [72] H Bock, H Schodel, T Vaupel. Z. Naturforsch. B Chem. Sci., 1997, 52: 515~523.

    73. [73]

      [73] M Graf, B Greaves, H Stoecklievans. Inorg. Chim. Acta, 1993, 204: 239~246.

    74. [74]

      [74] M Graf, H Stoecklievans. Acta Crystallogr. Sect. C, Cryst. Struct. Commun., 1994, 50: 1461~1464.

    75. [75]

      [75] R Ahmadi, K Kalateh, V Amani. Acta Crystallogr. Sect. E, Struct. Rep. Online, 2010, 66: M959~U916.

    76. [76]

      [76] M Yousefi. Acta Crystallogr. Sect. E, Struct. Rep. Online, 2010, 66: m1600~1601.

    77. [77]

      [77] A S Saljooghi, S J A Fatemi. Russ. J. Coord. Chem., 2011, 37: 168~171.

    78. [78]

      [78] M S Sadjadi, A Ebadi, K Zare. et al. Acta Crystallogr. Sect. E, Struct. Rep. Online, 2008, 64: M1050~U1725.

    79. [79]

      [79] L Zhang, X H Zhao, Y Zhao. Acta Crystallogr. Sect. E, Struct. Rep. Online, 2005, 61: M1760~M1761.

    80. [80]

      [80] R S Bitzer, W M Teles, A Abras et al. J. Brazil. Chem. Soc., 2005, 16: 963~968.

    81. [81]

      [81] M Bortoluzzi, E De Faveri, S Daniele et al. Eur. J. Inorg. Chem., 2006, 3393~3399.

    82. [82]

      [82] S Swavey, R Swavey. Coord. Chem. Rev., 2009, 253: 2627~2638.

    83. [83]

      [83] S H Wu, S E Burkhardt, Y W Zhong et al. Inorg. Chem., 2012, 51: 13312~13320.

    84. [84]

      [84] S Zhao, S M Arachchige, C Slebodnick et al. Inorg. Chem., 2008, 47: 6144~6152.

    85. [85]

      [85] W Z Chen, F N Rein, B L Scott et al. Chem. Eur. J., 2011, 17: 5595~5604.

    86. [86]

      [86] P Farras, S Maji, J Benet-Buchholz et al. Chem. Eur. J., 2013, 19: 7162~7172.

    87. [87]

      [87] T Kundu, B Sarkar, T K Mondal et al. Inorg. Chem., 2010, 49: 6565~6574.

    88. [88]

      [88] A K Das, B Sarkar, J Fiedler et al. J. Am. Chem. Soc., 2009, 131: 8895~8902.

    89. [89]

      [89] C Di Giovanni, L Vaquer, X Sala et al. Inorg. Chem., 2013, 52: 4335~4345.

    90. [90]

      [90] J Yuasa, S Fukuzumi. J. Am. Chem. Soc., 2006, 128: 15976~15977.

    91. [91]

      [91] J Yuasa, S Fukuzumi. J. Am. Chem. Soc., 2008, 130: 566~575.

  • 加载中
    1. [1]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    2. [2]

      Hong Wu Yuxi Wang Hongyan Feng Xiaokui Wang Bangkun Jin Xuan Lei Qianghua Wu Hongchun Li . Application of Computational Chemistry in the Determination of Magnetic Susceptibility of Metal Complexes. University Chemistry, 2025, 40(3): 116-123. doi: 10.12461/PKU.DXHX202405141

    3. [3]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    4. [4]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    5. [5]

      Tiantian Zheng Huiyi Wang Huimin Li Xuanhe Liu Hong Shang . Anti-Counterfeiting National Salvation Chronicle of 006. University Chemistry, 2024, 39(9): 254-258. doi: 10.3866/PKU.DXHX202307032

    6. [6]

      Wenli FENGLu ZHAOYunfeng BAIFeng FENG . Research progress on ultralong room temperature phosphorescent carbon dots. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 833-846. doi: 10.11862/CJIC.20240308

    7. [7]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    8. [8]

      Laiying Zhang Yaxian Zhu . Exploring the Silver Family. University Chemistry, 2024, 39(9): 1-4. doi: 10.12461/PKU.DXHX202409015

    9. [9]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    10. [10]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    11. [11]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    12. [12]

      Lifang HEWenjie TANGYaoze LUOMingsheng LIANGJianxin TANGYuxuan WUFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two dialkyltin complexes constructed based on 2, 2′-bipyridin-6, 6′-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1601-1609. doi: 10.11862/CJIC.20250012

    13. [13]

      Wenjing ZHANGXiaoqing WANGZhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254

    14. [14]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    15. [15]

      Hongjie SHENHaozhe MIAOYuhe YANGYinghua LIDeguang HUANGXiaofeng ZHANG . Synthesis, crystal structure, and fluorescence properties of two Cu(Ⅰ) complexes based on pyridyl ligand. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 855-863. doi: 10.11862/CJIC.20250009

    16. [16]

      Xiaotong LUPan ZHANGZijie ZHAOLei HUANGHongwei ZUOLili LIANG . Antitumor and antibacterial activities of pyridyl Schiff base indium and dysprosium complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1523-1532. doi: 10.11862/CJIC.20250073

    17. [17]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    18. [18]

      Qiaowen CHANGKe ZHANGGuangying HUANGNuonan LIWeiping LIUFuquan BAICaixian YANYangyang FENGChuan ZUO . Syntheses, structures, and photo-physical properties of iridium phosphorescent complexes with phenylpyridine derivatives bearing different substituting groups. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 235-244. doi: 10.11862/CJIC.20240311

    19. [19]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    20. [20]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

Metrics
  • PDF Downloads(0)
  • Abstract views(341)
  • HTML views(35)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return