Citation: He Xiaoyan, Wang Meng, Zhang Caiyun, Qiang Shenglu. Research on the Catalysts of Polymer Supported Metal Nanoparticles with Core-Shell Structure[J]. Chemistry, ;2016, 79(12): 1113-1120. shu

Research on the Catalysts of Polymer Supported Metal Nanoparticles with Core-Shell Structure

  • Received Date: 1 June 2016
    Available Online: 16 August 2016

    Fund Project:

  • Polymer-supported catalysts with core-shell structure have attracted great attention in the area of catalytic chemistry because of the unique structure, morphology and properties of the supporting materials. This article reviews the preparation and corresponding catalytic performance of the catalysts of polymer supported metal nanoparticles with core-shell structure, which comprise spherical polymer brushes supported metal nanoparticles, polymer hollow microspheres loaded with metal nanoparticles, polymer solid microspheres coating with metal nanoparticles. The influence of the composition and the structure characteristics of support materials on the catalytic activity and stability of the catalysts are illustrated. Finally the advantages and short-comings of such catalytic materials are summarized, in addition, the prospect of performance and applications are also forecasted.
  • 加载中
    1. [1]

      [1] N Sahiner, O Ozay, E Inger et al. J. Power Sources, 2011, 196(23): 10105~10111.

    2. [2]

      [2] Y Ma, Y Ni, F Guo et al. Cryst. Growth Des., 2015, 15(5): 2243~2252.

    3. [3]

      [3] T M Baber, D Graiver, C T Lira et al. Biomacromolecules, 2005, 6(3): 1334~1344.

    4. [4]

      [4] J Heveling. J. Chem. Educ., 2012, 89(12): 1530~1536

    5. [5]

      [5] P V Kamat, N M Dimitrijevi. Sol. Energy, 1990, 44:2(2):83~98.

    6. [6]

      [6] P Ball, L Amp, L Garwin. Nature, 1992, 355(6363):761~766.

    7. [7]

      [7] 郭玉明, 王玲玲, 张洁等. 化学通报, 2011, 74(2):106~115.

    8. [8]

      [8] K An, G A Somorjai. ChemCatChem, 2012, 4(10): 1512~1524.

    9. [9]

      [9] H H Zhou, Y L Li, J Q Huang et al. T. Nonferr. Metal. Soc., 2015, 25(12): 4001~4007.

    10. [10]

      [10] D Varade, K Haraguchi. Chem. Commun., 2014, 50(23): 3014~3017.

    11. [11]

      [11] H Liu, D Wan, J Du et al. ACS Appl. Mater. Interf., 2015, 7(37): 20885~20892.

    12. [12]

      [12] M Schwarze, J Keilitz, S Nowag et al. Langmuir, 2011, 27(10): 6511~6518.

    13. [13]

      [13] F Wen, W Zhang, G Wei et al. Chem. Mater., 2008, 20(6): 2144~2150.

    14. [14]

      [14] Q An, Z Li, R Graff et al. ACS Appl. Mater. Interf., 2015, 7(8): 4969~4978.

    15. [15]

      [15] J Zhang, S Xu, E Kumacheva. Adv. Mater., 2005, 17(19): 2336~2340.

    16. [16]

      [16] J Yuan, S Wunder, F Warmuth et al. Polymer, 2012, 53(1): 43~49.

    17. [17]

      [17] J Han, S Lu, C Jin et al. J. Mater. Chem. A, 2014, 2(32): 13016~13023.

    18. [18]

      [18] Y Mei, Y Lu, F Polzer et al. Chem. Mater., 2007, 19(5): 1062~1069.

    19. [19]

      [19] T Yao, Q Zuo, H Wang et al. J. Colloid Interf. Sci., 2015, 450:366~373.

    20. [20]

      [20] J Yu, W C Guo, M Yang et al. Sci. China Chem., 2014, 57(9):1211~1217.

    21. [21]

      [21] B Samanta, X C Yang, Y Ofir et al. Angew. Chem. Int. Ed., 2009, 48(29): 5341~5344.

    22. [22]

      [22] J Han, Y Liu, R Guo. Adv. Funct. Mater., 2009, 19(7): 1112~1117.

    23. [23]

      [23] A Katakai, N Seko, T Kawakami. J. At. Energy Soc. Jpn., 1998, 40(11):878~880.

    24. [24]

      [24] K Min, S Kiyohara, S Konishi et al. J. Membrane Sci., 1996, 117(1-2):33~38.

    25. [25]

      [25] S Wang, M Zhang, L Zhong et al. J. Mol. Catal. A-Chem., 2010, 327(1-2):92~100.

    26. [26]

      [26] D Li, B Zhao. Langmuir, 2007, 23(4): 2208~2217.

    27. [27]

      [27] S Tsuji, H Kawaguchi. Macromolecules, 2006, 39(13):4338~4344.

    28. [28]

      [28] J N Kizhakkedathu, R Norris-Jones, D E Brooks et al. Macromolecules, 2004, 37(3):734~743.

    29. [29]

      [29] X Chen, D P Randall, C Perruchot et al. Colloid Interf. Sci., 2003, 257(1):56~64.

    30. [30]

      [30] X He, Z Liu, F Fan et al. J. Nanopart. Res., 2015, 17(2):1~10.

    31. [31]

      [31] L Yan, M Yu, R Walker et al. Polymer, 2006, 47(14):4985~4995.

    32. [32]

      [32] N Pradhan, A Pal, T Pal. Colloid Surf. A, 2002, 196(2~3):247~257.

    33. [33]

      [33] Y Lu, J Yuan, F Polzer et al. ACS Nano, 2010, 4(12):7078~7086.

    34. [34]

      [34] B Liu, D Zhang, J Wang et al. J. Phys. Chem. C, 2013, 117(12):6363~6372.

    35. [35]

      [35] A Dong, Y Wang, D Wang et al. Micropor. Mesopor. Mat., 2003, 64(1-3):69~81.

    36. [36]

      [36] F Caruso. Chem. Eur. J., 2000, 6(3):413~419.

    37. [37]

      [37] E Donath, G B Sukhorukov, F Caruso et al. Angew. Chem. Int. Ed., 1998, 37(16): 2201~2205.

    38. [38]

      [38] A Graff, M Winterhalter, W Meier. Langmuir, 2001, 17(3):919~923.

    39. [39]

      [39] S J Ding, C L Zhang, M Yang et al. Polymer, 2006, 47(25): 8360~8366.

    40. [40]

      [40] Y Li, X Li, Y Li et al. Angew. Chem. Int. Ed., 2006, 45(22): 3639~3643.

    41. [41]

      [41] G H Ma, S Omi, V L Dimonie et al. J. Appl. Polym. Sci., 2002, 85(7):1530~1543.

    42. [42]

      [42] F Caruso. Adv. Mater., 2001, 13(1):11~22.

    43. [43]

      [43] A A Antipov, G B Sukhorukov, E Donath et al. J. Phys. Chem. B, 2001, 105(12):2281~2284.

    44. [44]

      [44] P Liu. E-Polymers, 2013, 7(1):725~755.

    45. [45]

      [45] S Miao, C Zhang, Z Liu et al. J. Phys. Chem. C, 2008, 112(3):774~780.

    46. [46]

      [46] 何晓燕, 刘志荣, 范富红等. 应用化学, 2015, 32(3):310~316.

    47. [47]

      [47] Y Lan, L Yang, M Zhang et al. ACS Appl. Mater. Interf., 2010, 2(1):127~133.

    48. [48]

      [48] T Yao, T Cui, H Wang et al. Nanoscale, 2014, 6(13):7666~7674.

    49. [49]

      [49] L Kong, X Lu, E Jin et al. J. Solid State Chem., 2009, 182(8):2081~2087.

    50. [50]

      [50] M Álvarez-Paino, G Marcelo, A Muñoz-Bonilla et al. Macromolecules, 2013, 46(8):2951~2962.

    51. [51]

      [51] W Liu, X Yang, W Huang. J. Colloid Interf. Sci., 2006, 304(1):160~165.

    52. [52]

      [52] Y Li, S Sha, Z Wu et al. Colloid Surf. A, 2016, 494:116~124.

    53. [53]

      [53] Y Zhang, Z Huang, F Tang et al. Thin Solid Films, 2006, 515(4):2555~2561.

    54. [54]

      [54] J Zhang, H Liu, Z Wang et al. Mater. Lett., 2007, 61(23~24):4579~4582.

    55. [55]

      [55] C Du, Y Guo, Y Guo et al. J. Mater. Chem. A, 2015, 3(46):23230~23239.

    56. [56]

      [56] A G Dong, Y J Wang, Y Tang et al. Chem. Commun., 2002, 4(4):350~351.

    57. [57]

      [57] J Zhang, J Liu, S Wang et al. Adv. Funct. Mater., 2004, 14(11):1089~1096.

    58. [58]

      [58] D Song, J Zhou, W Jiang et al. Mater. Lett., 2009, 63(2):282~284.

    59. [59]

      [59] W Zhang, Y Sun, L Zhang. Ind. Eng. Chem. Res., 2015, 54(25):6480~6488

    60. [60]

      [60] J Han, Y Liu, L Li et al. Langmuir, 2009, 25(18):11054~11060.

    61. [61]

      [61] S Zhang, W Wu, X Xiao et al. Chem-Asian J., 2012, 7(8):1781~1788.

    62. [62]

      [62] L Zhang, N Zhou, B Wang et al. J. Colloid Interf. Sci., 2014, 421(9):1~5.

  • 加载中
    1. [1]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    2. [2]

      Chen PuDaijie DengHenan LiLi Xu . Fe0.64Ni0.36@Fe3NiN Core-Shell Nanostructure Encapsulated in N-Doped Carbon Nanotubes for Rechargeable Zinc-Air Batteries with Ultralong Cycle Stability. Acta Physico-Chimica Sinica, 2024, 40(2): 2304021-0. doi: 10.3866/PKU.WHXB202304021

    3. [3]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    4. [4]

      Gaopeng LiuLina LiBin WangNingjie ShanJintao DongMengxia JiWenshuai ZhuPaul K. ChuJiexiang XiaHuaming Li . Construction of Bi Nanoparticles Loaded BiOCl Nanosheets Ohmic Junction for Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(7): 2306041-0. doi: 10.3866/PKU.WHXB202306041

    5. [5]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    6. [6]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    7. [7]

      Fanpeng MengFei ZhaoJingkai LinJinsheng ZhaoHuayang ZhangShaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095

    8. [8]

      Hanmei LüXin ChenQifu SunNing ZhaoXiangxin Guo . Uniform Garnet Nanoparticle Dispersion in Composite Polymer Electrolytes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305016-0. doi: 10.3866/PKU.WHXB202305016

    9. [9]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    10. [10]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    11. [11]

      You WuChang ChengKezhen QiBei ChengJianjun ZhangJiaguo YuLiuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027

    12. [12]

      Yu WangHaiyang ShiZihan ChenFeng ChenPing WangXuefei Wang . 具有富电子Ptδ壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081

    13. [13]

      Yuxia Luo Xiaoyu Xie Fangfang Chen . 药物递送魔法师——分子印迹聚合物. University Chemistry, 2025, 40(8): 202-210. doi: 10.12461/PKU.DXHX202409129

    14. [14]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    15. [15]

      Lutian ZhaoYangge GuoLiuxuan LuoXiaohui YanShuiyun ShenJunliang Zhang . Electrochemical Synthesis for Metallic Nanocrystal Electrocatalysts: Principle, Application and Challenge. Acta Physico-Chimica Sinica, 2024, 40(7): 2306029-0. doi: 10.3866/PKU.WHXB202306029

    16. [16]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    17. [17]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    18. [18]

      Xuefei Leng Yanshai Wang Hai Wang Shengyang Tao . The In-Depth integration of “Industry-University-Research” in the Exploration and Practice of “Comprehensive Training in Polymer Engineering”. University Chemistry, 2025, 40(4): 66-71. doi: 10.12461/PKU.DXHX202405105

    19. [19]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    20. [20]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

Metrics
  • PDF Downloads(0)
  • Abstract views(546)
  • HTML views(75)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return