Citation: Ding Mingzhu, Gao Jian, Li Dongdong, Lian Honglei. Syntheses and Applications of Core-Shell Structure Magnetic Nanoparticles Supported Ionic Liquids[J]. Chemistry, ;2016, 79(12): 1106-1112. shu

Syntheses and Applications of Core-Shell Structure Magnetic Nanoparticles Supported Ionic Liquids

  • Corresponding author: Lian Honglei, 
  • Received Date: 10 March 2016
    Available Online: 18 May 2016

    Fund Project:

  • Ionic liquids (ILs) have excellent solubility and stability, structure tunability and negligible vapor pressures, which make them be suitable reaction media for organic synthesis and catalyst. However, the large-scale application of ILs is still far from realization because of their high cost and difficult recovery. Superparamagnetic nanoparticles can be simply and efficiently removed from reaction mixtures with an external magnetic field. However, they are sensitive to agglomeration and can't be stably dispersed in the reaction system due to their high specific surface energy and magnetic dipole interactions. Using organic or inorganic substance to coat magnetic nanoparticles can form a kind of core-shell structure composite materials, which not only prevent them from agglomerating but also in favour of surface functionalization. Therefore, the immobilization of ILs on the surface of core-shell structure magnetic nanoparticles and the preparation of recyclable heterogeneous catalysts has been widely concerned. In this paper, the preparation method of core-shell magnetic nanoparticles supported IL catalysts as well as their applications in organic synthesis are reviewed, and the direction of the further research is suggested.
  • 加载中
    1. [1]

      [1] H P Steinruck, P Wasserscheid. Catal. Lett., 2015, 145:380~397.

    2. [2]

      [2] R Hayes, G G Warr, R Atkin. Chem. Rev., 2015, 115: 6357~6426.

    3. [3]

      [3] 孙鹏. 山东化工, 2015, 44(16): 57~58.

    4. [4]

      [4] 陈彪, 隆泉, 郑保忠. 化学进展, 2012, 24(2): 225~234.

    5. [5]

      [5] 李利芬, 胡英成. 林产化学与工业, 2015, 35(2): 163~170.

    6. [6]

      [6] J Safari, Z Zarnegar. C. R. Chimie, 2013, 16: 920~928.

    7. [7]

      [7] Y H Deng, D W Qi, C H Deng et al. J. Am. Chem. Soc., 2008, 130:28~29.

    8. [8]

      [8] X Q Xu, C H Deng, M X Gao et al. Adv. Mater., 2006, 18: 3289~3293.

    9. [9]

      [9] X Y Du, J He, J Zhu et al. Appl. Surf. Sci., 2012, 258: 2717~2723.

    10. [10]

      [10] L M Rossi, N J S Costa, F P Silva et al. Green Chem., 2014, 16: 2906~2933.

    11. [11]

      [11] B Liu, Z H Zhang. ACS Catal., 2015, 6: 326~338.

    12. [12]

      [12] M Kaur, S Sharma, P M S Bedi. Chin. J. Catal., 2015, 36: 520~549.

    13. [13]

      [13] S Safaei, I Mohammadpoor-Baltork, A R Khosropour et al. Catal. Sci. Technol., 2013, 3: 2717~2722.

    14. [14]

      [14] Y Park, W S Shin, S J Choi. Chem. Eng. J., 2013, 220: 204~213.

    15. [15]

      [15] E Rafiee, S Eavani, M Khodayari. Chin. J. Catal., 2013, 34: 1513~1518.

    16. [16]

      [16] J Zhu, P C Wang, M Lu. Monatsh. Chem., 2013, 144: 1671~1677.

    17. [17]

      [17] D E Lopez, J G Goodwin Jr, D A Bruce et al. Appl. Catal. A, 2008, 339: 76~83.

    18. [18]

      [18] X Z Liang. Ind. Eng. Chem. Res., 2014, 53: 17325~17332.

    19. [19]

      [19] M A Malvindi, V D Matteis, A Galeone et al. PloS One, 2014, 9: 1~11.

    20. [20]

      [20] C R Vestal, Z J Zhang. Nano Lett., 2003, 3: 1739~1743.

    21. [21]

      [21] Y Lu, Y D Yin, B T Mayers et al. Nano Lett., 2002, 2: 183~186.

    22. [22]

      [22] Y H Deng, C C Wang, J H Hu et al. Colloids Surf. A, 2005, 262: 87~93.

    23. [23]

      [23] G Knothe. Fuel Proc. Technol., 2005, 86: 1059~1070.

    24. [24]

      [24] 应好, 何桂金, 张丽锋等. 石油学报(石油加工), 2015, 31(2): 444~452.

    25. [25]

      [25] Z W Wu, Z Li, G M Wu et al. Ind. Eng. Chem. Res., 2014, 53: 3040~3046.

    26. [26]

      [26] P H Li, L L Bao, C H Hai et al. Catal. Commun., 2014, 46: 118~122.

    27. [27]

      [27] A J Kell, D L B Stringle, M S Workentin. Org. Lett., 2000, 2: 3381~3384.

    28. [28]

      [28] A Khalafi-Nezhad, S Mohammadi. ACS Comb. Sci., 2013, 15: 512~518.

    29. [29]

      [29] J Isaad. RSC Adv., 2014, 4: 49333~49341.

    30. [30]

      [30] F Rastegari, I M Baltork, A R Khosropour et al. RSC Adv., 2015, 5: 15274~15282.

    31. [31]

      [31] G M Ucoski, F S Nunes, G De Freitas-Silva et al. Appl. Catal. A, 2013, 459: 121~130.

    32. [32]

      [32] M S Saeedi, S Tangestaninejad, M Moghadam et al. Polyhedron, 2013, 49: 158~166.

    33. [33]

      [33] N Azgomi, M Mokhtary. J. Mol. Catal. A, 2015, 398: 58~64.

    34. [34]

      [34] Y Y Jiang, C Guo, H S Xia et al. J. Mol. Catal. B, 2009, 58: 103~109.

    35. [35]

      [35] M Bagheri, M M Farahani, M Ghorbani. J. Magn. Magn. Mater., 2013, 327: 58~63.

    36. [36]

      [36] H Hamadi, M Kooti, M Afshari et al. J. Mol. Catal. A, 2013, 373: 25~29.

    37. [37]

      [37] X X Duan, Y Liu, Q Zhao et al. RSC Adv., 2013, 3:13748~13755.

    38. [38]

      [38] X X Zheng, L Zhang, J Y Li et al. Chem. Commun., 2011, 47: 12325~12327.

    39. [39]

      [39] Y Zhang, Y W Zhao, C G Xia. J. Mol. Catal. A, 2009, 306: 107~112.

    40. [40]

      [40] B Zhen, Q Z Jiao, Y P Zhang et al. Appl. Catal. A, 2012, 445~446: 239~245.

    41. [41]

      [41] J Wang, Y C Zou, Y Sun et al. Chin. J. Chem., 2014, 35: 532~539.

    42. [42]

      [42] A Pourjavadi, S H Hosseini, F M Moghaddam et al. Green Chem., 2013, 15: 2913~2919.

    43. [43]

      [43] S Bahadorikhalili, L Mamani, H Mahdavi et al. RSC Adv., 2015, 5: 71297~71305.

    44. [44]

      [44] H Naeimi, D Aghaseyedkarimi. Dalton Transac., 2016, 45: 1243~1253.

    45. [45]

      [45] 缪青松, 梁金花, 杨晓瑞等. 石油学报(石油加工), 2015, 31(1): 188~193.

    46. [46]

      [46] B Karimi, F Mansouri, H Vali. Green Chem., 2014, 16: 2587~2596.

    47. [47]

      [47] M A Zolfigol, M Yarie. RSC Adv., 2015, 5: 103617~103624.

    48. [48]

      [48] Q Zhang, H Su, J Luo et al. Catal. Sci. Technol., 2013, 3: 235~243.

    49. [49]

      [49] Y Xiong, Z H Zhang, X Wang et al. Chem. Eng. J., 2014, 235: 349~355.

    50. [50]

      [50] M Zhang, M Li, Q Chen et al. RSC Adv., 2015, 5: 76048~76056.

    51. [51]

      [51] N Li, F Wang, Z Q Zhang et al. Ind. Eng. Chem. Res., 2014, 53: 16664~16671.

    52. [52]

      [52] 张薇, 李阳, 吴琼等. 化学通报, 2013, 76(12): 1137~1140.

    53. [53]

      [53] 李善建, 冯拉俊. 化学进展, 2014, 26(10): 1633~1644.

    54. [54]

      [54] P Tartaj, M P Morales, T Gonzalez-Carreno et al. J. Magn. Magn. Mater., 2005, 290~291: 28~34.

    55. [55]

      [55] H H Yang, S Q Zhang, X L Chen et al. Anal. Chem., 2004, 76: 1316~1321.

    56. [56]

      [56] C Z Jin, Y J Wang, H S Wei et al. J. Mater. Chem. A, 2014, 2: 11202~11208.

    57. [57]

      [57] H C Zhou, W Li, Q H Shou et al. Chin. J. Chem. Eng., 2012, 20(1): 146~151.

    58. [58]

      [58] A R Noori, S Hosseinkhani, P Ghiasi et al. Appl. Biochem. Biotechnol., 2014, 172: 3116~3127.

    59. [59]

      [59] V Taresco, L Francolini, F Padella et al. Mater. Sci. Eng. C, 2015, 52: 72~81.

    60. [60]

      [60] R Tietze, J Zaloga, H Unterweger et al. Biochem. Biophys. Res. Commun., 2015, 468: 463~470.

  • 加载中
    1. [1]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

    2. [2]

      Zhaoxin LIRuibo WEIMin ZHANGZefeng WANGJing ZHENGJianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235

    3. [3]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    4. [4]

      Yameen AhmedXiangxiang FengYuanji GaoYang DingCaoyu LongMustafa HaiderHengyue LiZhuan LiShicheng HuangMakhsud I. SaidaminovJunliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057

    5. [5]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    6. [6]

      Chen PuDaijie DengHenan LiLi Xu . Fe0.64Ni0.36@Fe3NiN Core-Shell Nanostructure Encapsulated in N-Doped Carbon Nanotubes for Rechargeable Zinc-Air Batteries with Ultralong Cycle Stability. Acta Physico-Chimica Sinica, 2024, 40(2): 2304021-0. doi: 10.3866/PKU.WHXB202304021

    7. [7]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    8. [8]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    9. [9]

      Zhiyang LiHui DengXinqi CaiZhuo Chen . Magnetic Core/Shell-Capsules Locally Neutralize Gastric Acid for Efficient Delivery of Active Probiotics. Acta Physico-Chimica Sinica, 2024, 40(7): 2306051-0. doi: 10.3866/PKU.WHXB202306051

    10. [10]

      Yu WangHaiyang ShiZihan ChenFeng ChenPing WangXuefei Wang . 具有富电子Ptδ壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081

    11. [11]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    12. [12]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    13. [13]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    14. [14]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    15. [15]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    16. [16]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    17. [17]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    18. [18]

      Asif Hassan RazaShumail FarhanZhixian YuYan Wu . Double S-Scheme ZnS/ZnO/CdS Heterostructure Photocatalyst for Efficient Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-0. doi: 10.3866/PKU.WHXB202406020

    19. [19]

      Lutian ZhaoYangge GuoLiuxuan LuoXiaohui YanShuiyun ShenJunliang Zhang . Electrochemical Synthesis for Metallic Nanocrystal Electrocatalysts: Principle, Application and Challenge. Acta Physico-Chimica Sinica, 2024, 40(7): 2306029-0. doi: 10.3866/PKU.WHXB202306029

    20. [20]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

Metrics
  • PDF Downloads(1)
  • Abstract views(280)
  • HTML views(26)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return