Citation: Chen Yiyong, Mao Weihong, Wang Naidong. ADSORPTION AND ADSORPTION MECHANISM OF 4-AMINO-1,2,4-TRIAZOLE RESIN FOR Cr(VI)[J]. Chinese Journal of Applied Chemistry, ;1992, 9(6): 31-35. shu

ADSORPTION AND ADSORPTION MECHANISM OF 4-AMINO-1,2,4-TRIAZOLE RESIN FOR Cr(VI)

  • Received Date: 19 December 1991
    Available Online: 25 March 1992

  • Cr(Ⅵ) was quantitatively adsorbed by 4-amino-1,2,4-triazole resin(4-ATR) in a medium of pH=1,but Cr3+ almost could not be adsorbed. The separation coefficient βCr(Ⅵ)/Cr3+ is as high as 5.52×103. The statically saturated sorption capacity is 179.4mg Cr(Ⅵ)/gresin[3.45 mmol Cr(Ⅵ)/g resin]. Cr(Ⅵ) adsorbed on 4-ATR can be reductively eluated by 5mol/L HCL. The sorption rate constants determined under various temperatures were k21℃=1.59×1O-3S-1,k25℃=1.87×10-3S-1 and k30℃=2.2×10-3S-1,respectively. The apparent activation energy of sorption E2 is 26.26kJ/mol.The thermodynamic parameters of sorption,enthalpy ΔH298,freeenergy ΔG298,and entropy ΔS298 of sorption (4-ATR) for Cr(Ⅵ) are 86.16, -15.1 kJ/mol,and 339.8 J/mol·Κ,respectively.Coordination molar ratio of Cr(Ⅵ)to -NH-H???19920607??? is 1:1. The sorption mechanism shows that the nitrogen atoms of the functional group of 4-ATR coordinated with Cr(Ⅵ) to form coordination bond. The 4-ATR can be used in the separation of Cr(Ⅵ) from the waste electroplating water. The percentage of recovery of chromium is 95.7.%., Cr(Ⅵ) was quantitatively adsorbed by 4-amino-1,2,4-triazole resin(4-ATR) in a medium of pH=1,but Cr3+ almost could not be adsorbed. The separation coefficient βCr(Ⅵ)/Cr3+ is as high as 5.52×103. The statically saturated sorption capacity is 179.4mg Cr(Ⅵ)/gresin[3.45 mmol Cr(Ⅵ)/g resin]. Cr(Ⅵ) adsorbed on 4-ATR can be reductively eluated by 5mol/L HCL. The sorption rate constants determined under various temperatures were k21℃=1.59×1O-3S-1,k25℃=1.87×10-3S-1 and k30℃=2.2×10-3S-1,respectively. The apparent activation energy of sorption E2 is 26.26kJ/mol.The thermodynamic parameters of sorption,enthalpy ΔH298,freeenergy ΔG298,and entropy ΔS298 of sorption (4-ATR) for Cr(Ⅵ) are 86.16, -15.1 kJ/mol,and 339.8 J/mol·Κ,respectively.Coordination molar ratio of Cr(Ⅵ)to -NH-H3+ almost could not be adsorbed. The separation coefficient βCr(Ⅵ)/Cr3+ is as high as 5.52×103. The statically saturated sorption capacity is 179.4mg Cr(Ⅵ)/gresin[3.45 mmol Cr(Ⅵ)/g resin]. Cr(Ⅵ) adsorbed on 4-ATR can be reductively eluated by 5mol/L HCL. The sorption rate constants determined under various temperatures were k21℃=1.59×1O-3S-1,k25℃=1.87×10-3S-1 and k30℃=2.2×10-3S-1,respectively. The apparent activation energy of sorption E2 is 26.26kJ/mol.The thermodynamic parameters of sorption,enthalpy ΔH298,freeenergy ΔG298,and entropy ΔS298 of sorption (4-ATR) for Cr(Ⅵ) are 86.16, -15.1 kJ/mol,and 339.8 J/mol·Κ,respectively.Coordination molar ratio of Cr(Ⅵ)to -NH-H is 1:1. The sorption mechanism shows that the nitrogen atoms of the functional group of 4-ATR coordinated with Cr(Ⅵ) to form coordination bond. The 4-ATR can be used in the separation of Cr(Ⅵ) from the waste electroplating water. The percentage of recovery of chromium is 95.7.%., Cr(Ⅵ) was quantitatively adsorbed by 4-amino-1,2,4-triazole resin(4-ATR) in a medium of pH=1,but Cr3+ almost could not be adsorbed. The separation coefficient βCr(Ⅵ)/Cr3+ is as high as 5.52×103. The statically saturated sorption capacity is 179.4mg Cr(Ⅵ)/gresin[3.45 mmol Cr(Ⅵ)/g resin]. Cr(Ⅵ) adsorbed on 4-ATR can be reductively eluated by 5mol/L HCL. The sorption rate constants determined under various temperatures were k21℃=1.59×1O-3S-1,k25℃=1.87×10-3S-1 and k30℃=2.2×10-3S-1,respectively. The apparent activation energy of sorption E2 is 26.26kJ/mol.The thermodynamic parameters of sorption,enthalpy ΔH298,freeenergy ΔG298,and entropy ΔS298 of sorption (4-ATR) for Cr(Ⅵ) are 86.16, -15.1 kJ/mol,and 339.8 J/mol·Κ,respectively.Coordination molar ratio of Cr(Ⅵ)to -NH-H is 1:1. The sorption mechanism shows that the nitrogen atoms of the functional group of 4-ATR coordinated with Cr(Ⅵ) to form coordination bond. The 4-ATR can be used in the separation of Cr(Ⅵ) from the waste electroplating water. The percentage of recovery of chromium is 95.7.%.
  • 加载中
  • 加载中
    1. [1]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    2. [2]

      Wenke ZHENGCe LIUWei CHENHongshan KEFanlong ZENGYibo LEIAnyang LIWenyuan WANG . Synthesis and bonding analysis of low-coordinate Fe and Cr complexes with ultra-bulky silylamino groups. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1285-1293. doi: 10.11862/CJIC.20250095

    3. [3]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    4. [4]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    5. [5]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    6. [6]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    7. [7]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    8. [8]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    9. [9]

      Wei Li Jinfan Xu Yongjun Zhang Ying Guan . 共价有机框架整体材料的制备及食品安全非靶向筛查应用——推荐一个仪器分析综合化学实验. University Chemistry, 2025, 40(6): 276-285. doi: 10.12461/PKU.DXHX202406013

    10. [10]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    11. [11]

      Yang ZHOULili YANWenjuan ZHANGPinhua RAO . Thermal regeneration of biogas residue biochar and the ammonia nitrogen adsorption properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1574-1588. doi: 10.11862/CJIC.20250032

    12. [12]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    13. [13]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    14. [14]

      Ruihu Wang Aidang Lu . 新型铬(VI)检测试纸的制备及应用——介绍一个应用化学综合实验. University Chemistry, 2025, 40(8): 284-290. doi: 10.12461/PKU.DXHX202410102

    15. [15]

      Yongqing Kuang Jie Liu Jianjun Feng Wen Yang Shuanglian Cai Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012

    16. [16]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    17. [17]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    18. [18]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    19. [19]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    20. [20]

      Jianan Zhang Mengzhen Xu Jiamin Liu Yufei He . 面向“双碳”目标的脱氯吸附剂开发研究型综合实验设计. University Chemistry, 2025, 40(6): 248-255. doi: 10.12461/PKU.DXHX202408068

Metrics
  • PDF Downloads(0)
  • Abstract views(354)
  • HTML views(20)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return