Citation: Chen Yiyong, Mao Weihong, Wang Naidong. ADSORPTION AND ADSORPTION MECHANISM OF 4-AMINO-1,2,4-TRIAZOLE RESIN FOR Cr(VI)[J]. Chinese Journal of Applied Chemistry, ;1992, 9(6): 31-35. shu

ADSORPTION AND ADSORPTION MECHANISM OF 4-AMINO-1,2,4-TRIAZOLE RESIN FOR Cr(VI)

  • Received Date: 19 December 1991
    Available Online: 25 March 1992

  • Cr(Ⅵ) was quantitatively adsorbed by 4-amino-1,2,4-triazole resin(4-ATR) in a medium of pH=1,but Cr3+ almost could not be adsorbed. The separation coefficient βCr(Ⅵ)/Cr3+ is as high as 5.52×103. The statically saturated sorption capacity is 179.4mg Cr(Ⅵ)/gresin[3.45 mmol Cr(Ⅵ)/g resin]. Cr(Ⅵ) adsorbed on 4-ATR can be reductively eluated by 5mol/L HCL. The sorption rate constants determined under various temperatures were k21℃=1.59×1O-3S-1,k25℃=1.87×10-3S-1 and k30℃=2.2×10-3S-1,respectively. The apparent activation energy of sorption E2 is 26.26kJ/mol.The thermodynamic parameters of sorption,enthalpy ΔH298,freeenergy ΔG298,and entropy ΔS298 of sorption (4-ATR) for Cr(Ⅵ) are 86.16, -15.1 kJ/mol,and 339.8 J/mol·Κ,respectively.Coordination molar ratio of Cr(Ⅵ)to -NH-H???19920607??? is 1:1. The sorption mechanism shows that the nitrogen atoms of the functional group of 4-ATR coordinated with Cr(Ⅵ) to form coordination bond. The 4-ATR can be used in the separation of Cr(Ⅵ) from the waste electroplating water. The percentage of recovery of chromium is 95.7.%., Cr(Ⅵ) was quantitatively adsorbed by 4-amino-1,2,4-triazole resin(4-ATR) in a medium of pH=1,but Cr3+ almost could not be adsorbed. The separation coefficient βCr(Ⅵ)/Cr3+ is as high as 5.52×103. The statically saturated sorption capacity is 179.4mg Cr(Ⅵ)/gresin[3.45 mmol Cr(Ⅵ)/g resin]. Cr(Ⅵ) adsorbed on 4-ATR can be reductively eluated by 5mol/L HCL. The sorption rate constants determined under various temperatures were k21℃=1.59×1O-3S-1,k25℃=1.87×10-3S-1 and k30℃=2.2×10-3S-1,respectively. The apparent activation energy of sorption E2 is 26.26kJ/mol.The thermodynamic parameters of sorption,enthalpy ΔH298,freeenergy ΔG298,and entropy ΔS298 of sorption (4-ATR) for Cr(Ⅵ) are 86.16, -15.1 kJ/mol,and 339.8 J/mol·Κ,respectively.Coordination molar ratio of Cr(Ⅵ)to -NH-H3+ almost could not be adsorbed. The separation coefficient βCr(Ⅵ)/Cr3+ is as high as 5.52×103. The statically saturated sorption capacity is 179.4mg Cr(Ⅵ)/gresin[3.45 mmol Cr(Ⅵ)/g resin]. Cr(Ⅵ) adsorbed on 4-ATR can be reductively eluated by 5mol/L HCL. The sorption rate constants determined under various temperatures were k21℃=1.59×1O-3S-1,k25℃=1.87×10-3S-1 and k30℃=2.2×10-3S-1,respectively. The apparent activation energy of sorption E2 is 26.26kJ/mol.The thermodynamic parameters of sorption,enthalpy ΔH298,freeenergy ΔG298,and entropy ΔS298 of sorption (4-ATR) for Cr(Ⅵ) are 86.16, -15.1 kJ/mol,and 339.8 J/mol·Κ,respectively.Coordination molar ratio of Cr(Ⅵ)to -NH-H is 1:1. The sorption mechanism shows that the nitrogen atoms of the functional group of 4-ATR coordinated with Cr(Ⅵ) to form coordination bond. The 4-ATR can be used in the separation of Cr(Ⅵ) from the waste electroplating water. The percentage of recovery of chromium is 95.7.%., Cr(Ⅵ) was quantitatively adsorbed by 4-amino-1,2,4-triazole resin(4-ATR) in a medium of pH=1,but Cr3+ almost could not be adsorbed. The separation coefficient βCr(Ⅵ)/Cr3+ is as high as 5.52×103. The statically saturated sorption capacity is 179.4mg Cr(Ⅵ)/gresin[3.45 mmol Cr(Ⅵ)/g resin]. Cr(Ⅵ) adsorbed on 4-ATR can be reductively eluated by 5mol/L HCL. The sorption rate constants determined under various temperatures were k21℃=1.59×1O-3S-1,k25℃=1.87×10-3S-1 and k30℃=2.2×10-3S-1,respectively. The apparent activation energy of sorption E2 is 26.26kJ/mol.The thermodynamic parameters of sorption,enthalpy ΔH298,freeenergy ΔG298,and entropy ΔS298 of sorption (4-ATR) for Cr(Ⅵ) are 86.16, -15.1 kJ/mol,and 339.8 J/mol·Κ,respectively.Coordination molar ratio of Cr(Ⅵ)to -NH-H is 1:1. The sorption mechanism shows that the nitrogen atoms of the functional group of 4-ATR coordinated with Cr(Ⅵ) to form coordination bond. The 4-ATR can be used in the separation of Cr(Ⅵ) from the waste electroplating water. The percentage of recovery of chromium is 95.7.%.
  • 加载中
  • 加载中
    1. [1]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    2. [2]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    3. [3]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    4. [4]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    5. [5]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    6. [6]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    7. [7]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    8. [8]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    9. [9]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    10. [10]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    11. [11]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    12. [12]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    13. [13]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    14. [14]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    15. [15]

      Yongqing Kuang Jie Liu Jianjun Feng Wen Yang Shuanglian Cai Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012

    16. [16]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    17. [17]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    18. [18]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    19. [19]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

    20. [20]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

Metrics
  • PDF Downloads(0)
  • Abstract views(242)
  • HTML views(19)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return