Citation: Li Qipeng, Luo Jiagang, He Xiaoquan, Zhang Zejun. Construction and Application of Chiral Coordination Polymers[J]. Chemistry, ;2016, 79(11): 1021-1027. shu

Construction and Application of Chiral Coordination Polymers

  • Received Date: 10 June 2016
    Available Online: 20 July 2016

    Fund Project:

  • Chiral coordination polymers(CPs) have become present one of research hot points in chemistry and materials science due to their structural diversities and adjustability, and potential multifunctional properties. In the synthesis process, we generally choose achiral ligands, chiral ligands, chiral solvents and chiral templates in order to obtain chiral CPs. In addition, by selecting the specific metallic cations, we can embed the as-prepared chiral CPs with the fluorescent, electric, magnetic, catalytic and nonlinear optical properties. In this work, the research progresses in synthesis methods and applications of chiral CPs in chiral separation, chiral catalysis, nonlinear optics, ferroelectric and multiferroic properties are discussed in details. Finally, the synthesis methods and applications of chiral CPs are prospected.
  • 加载中
    1. [1]

      [1] L S Zheng, M L Tong, X M Chen. Coord. Chem. Rev., 2003, 246(1-2):185~202.

    2. [2]

      [2] H C Zhou, J R Long, O M Yaghi. Chem. Rev., 2012, 112(2):673~674.

    3. [3]

      [3] K Sumida, D L Rogow, J A Mason et al. Chem. Rev., 2012, 112(2):724~781.

    4. [4]

      [4] D Venkataraman, G B Gardner, S Lee et al. J. Am. Chem. Soc., 1995, 117(46):11600~11601.

    5. [5]

      [5] K K Bisht, B Parmar, Y Rachur et al. CrystEngComm, 2015, 17:5341~5356.

    6. [6]

      [6] C B Tian, H B Zhanga, S W Du. CrystEngComm, 2014,16:4059~4068.

    7. [7]

      [7] Z G Gu, C H Zhan, J Zhang et al. Chem. Soc. Rev., 2016, 45:3122~3144.

    8. [8]

      [8] H B Zhang, S T Wu, C B Tian et al. CrystEngComm, 2012, 14:4165~4167.

    9. [9]

      [9] X W Wang, L Han, T J Cai et al. Cryst. Growth Des., 2007, 7(6):1027~1030.

    10. [10]

      [10] T Ezuhara, K Endo, Y Aoyama. J. Am. Chem. Soc., 1999, 121(14):3279~3283.

    11. [11]

      [11] S Q Zang, Y Su, Y Z Li et al. Inorg. Chem., 2006, 45(1):174~180.

    12. [12]

      [12] H B Zhang, P Lin, X C Shan et al. CrystEngComm, 2014, 16:1245~1248.

    13. [13]

      [13] G Peng, L Ma, J B Cai et al. Cryst. Growth Des., 2011, 11(6):2485~2492.

    14. [14]

      [14] X L Luo, Y Cao, T Wang et al. J. Am. Chem. Soc., 2016, 138(3):786~789.

    15. [15]

      [15] D F Sun, D J Collins, Y X Ke et al. Chem. Eur. J., 2006, 12(14):3768~3776.

    16. [16]

      [16] J Zhang, S M Chen, H Valle et al. J. Am. Chem. Soc., 2007, 129(46):14168~14169.

    17. [17]

      [17] Q P Li, J J Qian, C B Tian et al. Dalton Transac., 2014, 43:3238~3243.

    18. [18]

      [18] Y Q Hu, M H Zeng, K Zhang et al. J. Am. Chem. Soc., 2013, 135(21):7901~7908.

    19. [19]

      [19] X J Kong, Y L Wu, L S Long et al. J. Am. Chem. Soc., 2009, 131(20):6918~6919.

    20. [20]

      [20] Z M Zhang, S Yao, Y G Li et al. J. Am. Chem. Soc., 2009, 131(41):14600~14601.

    21. [21]

      [21] Z M Zhang, Y G Li, S Yao et al. Angew. Chem. Int. Ed., 2009, 121(9):1609~1612.

    22. [22]

      [22] Y C Liu, H B Zhang, C B Tian et al. CrystEngComm, 2013, 15:5201~5204.

    23. [23]

      [23] D Tanaka, S Kitagawa. Chem. Mater., 2008, 20(3):922~931.

    24. [24]

      [24] H Y An, E B Wang, D R Xiao et al. Angew. Chem. Int. Ed., 2006, 118(6):918~922.

    25. [25]

      [25] J Zhang, R Liu, P Y Feng et al. Angew. Chem. Int. Ed., 2007, 46(44):8388~8391.

    26. [26]

      [26] T J Prior, M J Rosseinsky. Inorg. Chem., 2003, 42(5):1564~1575.

    27. [27]

      [27] Z J Lin, A M Z Slawin, R E Morris. J. Am. Chem. Soc., 2007, 129(16):4880~4881.

    28. [28]

      [28] Y H Han, Y C Liu, X S Huang et al. Chem. Commun., 2015, 51:14481~14484.

    29. [29]

      [29] S M Xie, Z J Zhang, Z Y Wang et al. J. Am. Chem. Soc., 2011, 133(31):11892~11895.

    30. [30]

      [30] M Zhang, Z J Pu, X L Chen et al. Chem. Commun., 2013, 49:5201~5203.

    31. [31]

      [31] J Shen, Y Okamoto. Chem. Rev., 2016, 116(3):1094~1138.

    32. [32]

      [32] D Farrusseng, S Aguado, C Pinel. Angew. Chem. Int. Ed., 2009, 48(41):7502~7513.

    33. [33]

      [33] J S Seo, D Whang, H Lee et al. Nature, 2000, 404:982~986.

    34. [34]

      [34] P Y Wu, C He, J Wang et al. J. Am. Chem. Soc., 2012, 134(36):14991~14999.

    35. [35]

      [35] Q X Han, B Qi, W M Ren et al. Nat. Commun., 2015, 6:10007.

    36. [36]

      [36] O R Evans, R G Xiong, Z Y Wang et al. Angew. Chem. Int. Ed., 1999, 38(4):536~538.

    37. [37]

      [37] Y T Wang, H H Fan, H Z Wang et al. Inorg. Chem., 2005, 44(12):4148~4150.

    38. [38]

      [38] C C Frazier, M A Harvey, M P Cockerham et al. J. Phys. Chem., 1986, 90(22):5703~5706.

    39. [39]

      [39] C Wang, T Zhang, W B Lin. Chem. Rev., 2012, 112(2):1084~1104.

    40. [40]

      [40] Y H Wen, T L Sheng, Z Z Xue et al. Inorg. Chem., 2015, 54(8):3951~3957.

    41. [41]

      [41] Y P He, Y X Tan, J Zhang. Inorg. Chem., 2013, 52(21):12758~12762.

    42. [42]

      [42] T Hang, W Zhang, H Y Ye et al. Chem. Soc. Rev., 2011, 40:3577~3598.

    43. [43]

      [43] W Zhang, R G Xiong. Chem. Rev., 2012, 112(2):1163~1195.

    44. [44]

      [44] J D Lin, X F Long, P Lin et al. Cryst. Growth Des., 2010, 10(1):146~157.

    45. [45]

      [45] D W Fu, H L Cai, Y M Liu et al. Science, 2013, 339(6118):425~428.

    46. [46]

      [46] Z H Sun, X T Liu, T Khan et al. Angew. Chem. Int. Ed. 2016, 128(22):6655~6660.

    47. [47]

      [47] C M Liu, R G Xiong, D Q Zhang et al. J. Am. Chem. Soc., 2010, 132(12):4044~4045.

    48. [48]

      [48] G C Xu, W Zhang, X M Ma et al. J. Am. Chem. Soc., 2011, 133(38):14948~14951.

  • 加载中
    1. [1]

      Ran YuChen HuRuili GuoRuonan LiuLixing XiaCenyu YangJianglan Shui . Catalytic Effect of H3PW12O40 on Hydrogen Storage of MgH2. Acta Physico-Chimica Sinica, 2025, 41(1): 100001-0. doi: 10.3866/PKU.WHXB202308032

    2. [2]

      Xiaogang Liu Mengyu Chen Yanyan Li Xiantao Ma . Experimental Reform in Applied Chemistry for Cultivating Innovative Competence: A Case Study of Catalytic Hydrogen Production from Liquid Formaldehyde Reforming at Room Temperature. University Chemistry, 2025, 40(7): 300-307. doi: 10.12461/PKU.DXHX202408007

    3. [3]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    4. [4]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    5. [5]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    6. [6]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    7. [7]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    8. [8]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    9. [9]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    10. [10]

      Xin HanZhihao ChengJinfeng ZhangJie LiuCheng ZhongWenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 2404023-0. doi: 10.3866/PKU.WHXB202404023

    11. [11]

      Runjie Li Hang Liu Xisheng Wang Wanqun Zhang Wanqun Hu Kaiping Yang Qiang Zhou Si Liu Pingping Zhu Wei Shao . 氨基酸的衍生及手性气相色谱分离创新实验. University Chemistry, 2025, 40(6): 286-295. doi: 10.12461/PKU.DXHX202407059

    12. [12]

      Guilan He Yaofeng Yuan . 手性二茂铁双膦配体Xyliphos的合成及应用. University Chemistry, 2025, 40(8): 130-137. doi: 10.12461/PKU.DXHX202409122

    13. [13]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    14. [14]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    15. [15]

      Changjun YouChunchun WangMingjie CaiYanping LiuBaikang ZhuShijie Li . Improved Photo-Carrier Transfer by an Internal Electric Field in BiOBr/N-rich C3N5 3D/2D S-Scheme Heterojunction for Efficiently Photocatalytic Micropollutant Removal. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-0. doi: 10.3866/PKU.WHXB202407014

    16. [16]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    17. [17]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    18. [18]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    19. [19]

      Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378

    20. [20]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

Metrics
  • PDF Downloads(15)
  • Abstract views(359)
  • HTML views(80)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return