Citation: Niu Huizhe, Zhang Zhiqiang, Bi Qiuyan, Tao Zhenqi, Li Xiaosong. Membrane Distillation-Crystallization Coupling Technology and Its Application Prospect in Purification of Brine[J]. Chemistry, ;2016, 79(11): 1016-1020. shu

Membrane Distillation-Crystallization Coupling Technology and Its Application Prospect in Purification of Brine

  • Corresponding author: Bi Qiuyan, 
  • Received Date: 5 April 2016
    Available Online: 11 July 2016

    Fund Project:

  • As a new separation technology, the membrane distillation-crystallization coupling technology exhibits unique characteristics such as high separation efficiency, environment-friendly and energy-saving. The separation principle, characteristics and advantages of this technology are reviewed. In addition, its development and application are also summarized, and its research and application for treating inorganic salt solution was emphasized. Finally, its application in purification of brine is prospected.
  • 加载中
    1. [1]

      [1] 吴庸烈. 膜科学与技术, 2003, 23(4):67~75.

    2. [2]

      [2] L Martínez-Díez, F J Florido-Díaz. Desalination, 2001, 137(1~3):267~273.

    3. [3]

      [3] L Carlsson. Desalination, 1983, 45(1~3):221~222.

    4. [4]

      [4] M Khayet, M P Godino, J I Mengua. Desalination, 2003, 157(1):297~305.

    5. [5]

      [5] F Macedonio, E Drioli, E Curcio et al. Desalin. Water Treat., 2009, 9(1~3):49~53.

    6. [6]

      [6] X Ji, E Curcio, S A Obaidani et al. Sep. Purif. Technol., 2010, 71(1):76~82.

    7. [7]

      [7] P Wang, T S Chung. Water Res., 2012, 46(13):4037~4052.

    8. [8]

      [8] E Drioli, E Curcio, G Di Profio et al. Transac. Inst. Chem. Eng. A, 2006, 84(A3):209~220.

    9. [9]

      [9] M C de Andres, J Doria, M Khayet et al. Desalination, 1998, 115(1):71~81.

    10. [10]

      [10] M Tomaszewska. Ind. Eng. Chem. Res., 2000, 39(8):3038~3041.

    11. [11]

      [11] E Drioli, E Curcio, A Criscuoli et al. J. Membr. Sci., 2004, 239(1):27~38.

    12. [12]

      [12] M Regel-Rosocka. J. Hazard. Mater., 2010, 177(1~3):57~69.

    13. [13]

      [13] M S H Bader. J. Hazard. Mater., 2005, 121(1~3):89~108.

    14. [14]

      [14] M Gryta, K Karakulski, A W Morawski. Water Resour., 2001, 35(15) 3665~3669.

    15. [15]

      [15] M Gryta, K Karakulski. Desalination, 1999, 121(1):23~29.

    16. [16]

      [16] B Jiao, A Cassano, E Drioli. J. Food Eng., 2004, 63(3):303~324.

    17. [17]

      [17] O S Lukanin, S M Gunko, M T Bryk. J. Food Eng., 2003, 60(3):275~280.

    18. [18]

      [18] K Bélafi-Bakó, B Koroknai. J. Membr. Sci., 2006, 269(1):187~193.

    19. [19]

      [19] W Kevin, D R Lawson. J. Membr. Sci., 1997, 124(1):1~25.

    20. [20]

      [20] 潘林梅, 石飞燕, 郭立玮. 南京中医药大学学报, 2014(1):97~100.

    21. [21]

      [21] K Y Wang, M M Teoh, A Nugroho et al. Chem. Eng. Sci., 2011, 66(1):2421~2430.

    22. [22]

      [22] 林浩, 甄卫军, 杨清香. 新疆石油学报, 2001, 13(3):56~61.

    23. [23]

      [23] E Curcio, A Criscuoli, E Drioli. Ind. Eng. Chem. Res., 2001, 40(12):2679~2684.

    24. [24]

      [24] E Curio, A Criscuoli, E Drioli. Proceeding of 3rd Italy-Korea Workshop on Membranes and Membrane Proeesses, Cetraro, 2001.

    25. [25]

      [25] 齐跃, 余立新, 周啸等. 膜科学与技术, 1996, 16(3):68~70.

    26. [26]

      [26] C Charcosset, R Kieffer, D Mangin et al. Ind. Eng. Chem. Res., 2010, 49(12):5489~5495.

    27. [27]

      [27] G Di Profio, G Perrone, E Curcio et al. Ind. Eng. Chem. Res., 2005, 44(26):10005~10012.

    28. [28]

      [28] K Y Wang, T S Chung, M Grata. Chem. Eng. Sci., 2008, 63(9):2587~2589.

    29. [29]

      [29] 张亚静, 吴雪妹. 过滤与分离, 2001, 11(2):16~19.

    30. [30]

      [30] G Guan, R Wang, F Wicaksana et al. Ind. Eng. Chem. Res., 2012, 51(41):13405~13413.

    31. [31]

      [31] 曹冬梅, 张雨山, 高春娟等. 盐业与化工, 2012, 6(41):37~40.

    32. [32]

      [32] 倪伟. 北京化工大学硕士学位论文, 2007.

    33. [33]

      [33] C Corinne, W David. Desalination, 2003, 157(1):307~314.

    34. [34]

      [34] 吴庸烈, E·德里奥里.水处理技术, 1989,15(5):267~271.

    35. [35]

      [35] E Curcio, G D Profio, E Drioli. J. Cryst. Growth, 2003, 24(1~2):166~176.

    36. [36]

      [36] P Godino, L Pena, J I Mengual. J. Membr. Sci., 1996, 121(1):83~93.

    37. [37]

      [37] F Edwie, T S Chung. J. Membr. Sci., 2012, 421(12):111~123.

    38. [38]

      [38] M Khayet. Adv. Colloid Interf. Sci., 2011, 164(1~2):56~88.

    39. [39]

      [39] M S El-Bourawi, Z Ding, R Ma et al. J. Membr. Sci., 2006, 285(s1~2):4~29

    40. [40]

      [40] Z W Ding, L Y Liu, M S El-Bourawi et al. Desalination, 2005, 172(1):27~40.

    41. [41]

      [41] P A Hogan, A G Fane, G L Morrison. Desalination, 1991, 81(s1~3):81~90.

    42. [42]

      [42] J Koschikowski, M Wieghaus, M Rommel. Desalination, 2003, 156(1):295~304.

    43. [43]

      [43] C Charcosset. Desalination, 2009, 245(s1~3):214~231.

    44. [44]

      [44] 马润宇, 王艳辉, 涂感良. 中国膜科学与技术, 2003, 4(23):145~150.

    45. [45]

      [45] 延滨, 刘丽英, 马润宇等. 高校化学工程学报, 2002, 16(4):389~395.

    46. [46]

      [46] D Y Cheng, S J Wiersma. USP:4316772.1982.

    47. [47]

      [47] M M Teoh, S Bonyadi, T S Chung. J. Membr. Sci., 2008, 311(s1~2):371~379.

    48. [48]

      [48] B A Li, K K Sirkar. Ind. Eng. Chem. Res., 2004, 43(17):5300~5309.

    49. [49]

      [49] T M Chan, A G Fane, J T Matheickal et al. J. Membr. Sci., 2005, 257(s1~2):144~155.

    50. [50]

      [50] D Hou, G Dai, J Wang et al. Desalination, 2013, 326(5):115~124.

    51. [51]

      [51] F Edwie, T S Chung. Chem. Eng. Sci., 2013, 98(29):160~172.

    52. [52]

      [52] 关云山, 武警, 程文婷等. 化工学报, 2015, 5(66):1767~1776.

    53. [53]

      [53] 马培华. 化学进展, 2009, 11(21):2349~2357.

    54. [54]

      [54] 孙锡良, 陈白珍, 徐徽等. 中南大学学报:自然科学版, 2007, 38(2):262~266.

  • 加载中
    1. [1]

      Yan Xiao Shuling Li Yifan Li Jianing Fan Linlin Shi . Discovering the Beauty of Life: Adding Some “Ingredients” to Crystals. University Chemistry, 2024, 39(6): 366-372. doi: 10.3866/PKU.DXHX202312025

    2. [2]

      Lanjun Cheng Xinyuan Wang Jie An Xiang Wu Chengfeng Zhu Yanming Fu Yougui Li . Improvement of the Resolution Experiment of Racemic Tartaric Acid. University Chemistry, 2025, 40(7): 277-285. doi: 10.12461/PKU.DXHX202408010

    3. [3]

      Xuewei Qian Xingwen Sun Houjin Li Zhanxiang Liu Yuan Zheng Lin Wu Shuanglian Cai Ying Xiong Guangao Yu Qingwen Liu Jie Han Xin Du Chengshan Yuan Qihan Zhang Shuyong Zhang Jianrong Zhang . Basic Operations and Specification Suggestions for Organic Chemical Recrystallization Experiments. University Chemistry, 2025, 40(5): 66-75. doi: 10.12461/PKU.DXHX202503126

    4. [4]

      Chengshan Yuan Xiaolong Li Xiuping Yang Xiangfeng Shao Zitong Liu Xiaolei Wang Yongwen Shen . Standardized Operational Guidelines for Mixed-Solvent Recrystallization in Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 122-127. doi: 10.12461/PKU.DXHX202504073

    5. [5]

      Houjin Li Shuanglian Cai Yuan Zheng Zhanxiang Liu Chengshan Yuan Lin Wu Guangao Yu Jie Han Qingwen Liu Xin Du Ying Xiong Qihan Zhang Xingwen Sun Jianrong Zhang Shuyong Zhang . Basic Operations and Standardization Suggestions for Organic Chemistry Distillation Experiments. University Chemistry, 2025, 40(5): 40-54. doi: 10.12461/PKU.DXHX202411053

    6. [6]

      Jinfeng Chu Lan Jin Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016

    7. [7]

      Shi-Yu LuWenzhao DouJun ZhangLing WangChunjie WuHuan YiRong WangMeng Jin . Amorphous-Crystalline Interfaces Coupling of CrS/CoS2 Few-Layer Heterojunction with Optimized Crystallinity Boosted for Water-Splitting and Methanol-Assisted Energy-Saving Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(8): 2308024-0. doi: 10.3866/PKU.WHXB202308024

    8. [8]

      Wei ZhongDan ZhengYuanxin OuAiyun MengYaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005

    9. [9]

      Xiao Liu Guangzhong Cao Mingli Gao Hong Wu Hongyan Feng Chenxiao Jiang Tongwen Xu . Seawater Salinity Gradient Energy’s Job Application in the Field of Membranes. University Chemistry, 2024, 39(9): 279-282. doi: 10.3866/PKU.DXHX202306043

    10. [10]

      Shuyu Liu Xiaomin Sun Bohan Song Gaofeng Zeng Bingbing Du Chongshen Guo Cong Wang Lei Wang . Design and Fabrication of Phospholipid-Vesicle-based Artificial Cells towards Biomedical Applications. University Chemistry, 2024, 39(11): 182-188. doi: 10.12461/PKU.DXHX202404113

    11. [11]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

    12. [12]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    13. [13]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    14. [14]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

    15. [15]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    16. [16]

      Tianqi BaiKun HuangFachen LiuRuochen ShiWencai RenSongfeng PeiPeng GaoZhongfan Liu . Nanoscale Mechanism of Microstructure-Dependent Thermal Diffusivity in Thick Graphene Sheets. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-0. doi: 10.3866/PKU.WHXB202404024

    17. [17]

      Jiahao LuXin MingYingjun LiuYuanyuan HaoPeijuan ZhangSonghan ShiYi MaoYue YuShengying CaiZhen XuChao Gao . High-Precision and Reliable Thermal Conductivity Measurement for Graphene Films Based on an Improved Steady-State Electric Heating Method. Acta Physico-Chimica Sinica, 2025, 41(5): 100045-0. doi: 10.1016/j.actphy.2025.100045

    18. [18]

      Xiaojing TianZhichun HuangQingsong ZhangXu WangNing YangNanping Deng . PNIPAm Thermo-Responsive Nanofibers Mats: Morphological Stability and Response Behavior under Cross-Linking. Acta Physico-Chimica Sinica, 2024, 40(4): 2304037-0. doi: 10.3866/PKU.WHXB202304037

    19. [19]

      Yue ZhangBao LiLixin Wu . GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions. Acta Physico-Chimica Sinica, 2024, 40(5): 2305038-0. doi: 10.3866/PKU.WHXB202305038

    20. [20]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

Metrics
  • PDF Downloads(0)
  • Abstract views(596)
  • HTML views(39)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return