Citation: Wang Cheng, Huang Jun, Wang Shubo, Zhang Jianbo, Li Jianqiu, Ouyang Minggao. The Performance Degradation Study of Vehicle Fuel Cell under Start-Stop Operating Mode[J]. Chemistry, ;2016, 79(11): 1001-1011. shu

The Performance Degradation Study of Vehicle Fuel Cell under Start-Stop Operating Mode

  • Corresponding author: Zhang Jianbo, 
  • Received Date: 11 March 2016
    Available Online: 11 July 2016

  • Through the research and development and technology breakthrough of proton exchange membrane fuel cell(PEMFC) for automobile application in the last two decades all over the world, at present, the fuel cell vehicles have been launched to the market and the PEMFC vehicles have become a green new energy automobile and obtained extensive attention. However, at the automobile operating mode, PEMFC will suffer from various cycles, such as humidification, temperature, fuel supply, current, voltage etc. It will cause the PEMFC key materials degradation and the fuel cell life time attenuation. The vehicle PEMFC lifetime involve massive scale of problems and this review focused on the automobile start-stop operating mode. The study approaches, degradation mechanism, experimental verification, modeling analysis of PEMFC under the start-stop operating mode were reviewed in detail. Furthermore, the mitigation strategies were also introduced from the perspective of fuel cell system management. Finally, some viewpoint, query, analysis and explanation of the problem were provided based on the above review.
  • 加载中
    1. [1]

      [1] 王诚, 王树博, 张剑波等. 化学进展, 2015, 27(4):424~435.

    2. [2]

      [2] 欧阳明高. 内燃机学报, 2008, 26(S1):107~114.

    3. [3]

      [3] 王诚, 王树博, 张剑波等. 化学进展, 2015, 27(2~3):310~320.

    4. [4]

      [4] J H Kim, E A Cho, J H Jang et al. J. Electrochem. Soc., 2010, 157(1):B104~B112.

    5. [5]

      [5] Kim J H, Y Y Jo, E A Cho et al. J. Electrochem. Soc., 2010, 157(5):B633~B642.

    6. [6]

      [6] Y Y Jo, E A Cho, J H Kim et al. J. Power Sources, 2011, 196(23):9906~9915.

    7. [7]

      [7] J H Kim, E A Cho, J H Jang et al. J. Electrochem. Soc., 2009, 156(8):B955~B961.

    8. [8]

      [8] Y Y Jo, E A Cho, J H Kim et al. Int. J. Hydrogen Energ., 2010, 35(23):13118~13124.

    9. [9]

      [9] K Eom, G Kim, E Cho et al. Int. J. Hydrogen Energ., 2012, 37(23):18455~18462.

    10. [10]

      [10] Y Takagi, Y Takakuwa. ECS Transactions, 2006, 3(1):855~860.

    11. [11]

      [11] Y Yu, G Wang, Z Tu et al. Electrochim. Acta, 2012, 71(1):181~193.

    12. [12]

      [12] Y Ishigami, K Takada, H Yano et al. J. Power Sources, 2011, 196(6):3003~3008.

    13. [13]

      [13] Y Yu, Z Tu, H Zhang et al. J. Power Sources, 2011, 196(11):5077~5083.

    14. [14]

      [14] C A Reiser, L Bregoli, T W Patterson et al. Electrochem. Solid-State Lett., 2005, 8(6):A273~A276.

    15. [15]

      [15] Y Shao, G Yin, Y Gao. J. Power Sources, 2007, 171(2):558~566.

    16. [16]

      [16] W R Baumgartner, P Parz, S D Fraser et al. J. Power Sources, 2008, 182(1):413~421.

    17. [17]

      [17] J Kim, J Lee, Y Tak. J. Power Sources, 2009, 192(2):674~678.

    18. [18]

      [18] Q Shen, M Hou, D Liang et al. J. Power Sources, 2009, 189(2):1114~1119.

    19. [19]

      [19] H Tang, Z Qi, M Ramani et al. J. Power Sources, 2006, 158(2):1306~1312.

    20. [20]

      [20] N Yousfi-Steiner,P Mocotéguy, D Candusso et al. J. Power Sources, 2009, 194(1):130~145.

    21. [21]

      [21] J P Meyers, R M Darling. J. Electrochem. Soc., 2006, 153(8):A1432~A1442.

    22. [22]

      [22] J H Ohs, U Sauter, S Maass et al. J. Power Sources, 2011, 196(1):255~263.

    23. [23]

      [23] G W Scheffler. USP:5013617-A1, 1989.

    24. [24]

      [24] C L Bushnell, C L Davis. USP:5045414-A1, 1989.

    25. [25]

      [25] R A Sederquist, K Marchand. USP:6660416-B2, 2001.

    26. [26]

      [26] N E Cipollini. USP:6379827-B1, 2000.

    27. [27]

      [27] M E Gorman. USP:6127057-A, 1998.

    28. [28]

      [28] M L Perry. USP:20110223495-A1, 2009.

    29. [29]

      [29] M Bednarz, M Woski. USP:7972739-B2, 2002.

    30. [30]

      [30] T A Bekkedahl, L J Bregoli. USP:6913845-B2, 2002.

    31. [31]

      [31] L L V Dine, M M Steinbugler, C A Reiser et al. USP:6514635-B2, 2001.

    32. [32]

      [32] J Nathaniel. USP:2005026022-A1, 2002.

    33. [33]

      [33] D A Condit, R D Breault. USP:6635370, 2004.

    34. [34]

      [34] D A Condit, R D Breault, R Breault et al. USP:2002182456-A1, 2001.

    35. [35]

      [35] P R Margiott, C W Callahan, M L Perry et al. USP:6828048-B, 2001.

    36. [36]

      [36] C A Reiser, D Yang, R D Sawyer. USP:6858336-B2, 2002.

    37. [37]

      [37] R J Balliet, C A Reiser, T W Patterson et al. USP:6838199, 2002.

    38. [38]

      [38] C A Reiser, D Yang, R D Sawyer. USP:6887599-B2, 2002.

    39. [39]

      [39] P R Margiott, F R Preli, G W Kulp et al. USP:6984464, 2003.

    40. [40]

      [40] K Goto, T Kamihara. CN:1674340-A, 2004.

    41. [41]

      [41] C A Reiser, D Yang, R D Sawyer. USP:7410712-B2, 2005.

  • 加载中
    1. [1]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    2. [2]

      Zilin HuYaoshen NiuXiaohui RongYongsheng Hu . Suppression of Voltage Decay through Ni3+ Barrier in Anionic-Redox Active Cathode for Na-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306005-0. doi: 10.3866/PKU.WHXB202306005

    3. [3]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    4. [4]

      Weilai YuChuanbiao Bie . Unveiling S-Scheme Charge Transfer Mechanism. Acta Physico-Chimica Sinica, 2024, 40(4): 2307022-0. doi: 10.3866/PKU.WHXB202307022

    5. [5]

      Chi Zhang Yi Xu Xiaopeng Guo Zian Jie Ling Li . 五彩斑斓的秘密——物质显色机理. University Chemistry, 2025, 40(6): 266-275. doi: 10.12461/PKU.DXHX202407061

    6. [6]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    7. [7]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    8. [8]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    9. [9]

      Changsheng AnTao Liu . Decoding SEI chemistry at the lithium-metal potential. Acta Physico-Chimica Sinica, 2025, 41(9): 100101-0. doi: 10.1016/j.actphy.2025.100101

    10. [10]

      Yuejiao AnWenxuan LiuYanfeng ZhangJianjun ZhangZhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-0. doi: 10.3866/PKU.WHXB202407021

    11. [11]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    12. [12]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    13. [13]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    14. [14]

      Yi Li Zhaoxiang Cao Peng Liu Xia Wu Dongju Zhang . Revealing the Coloration and Color Change Mechanisms of the Eriochrome Black T Indicator through Computational Chemistry and UV-Visible Absorption Spectroscopy. University Chemistry, 2025, 40(3): 132-139. doi: 10.12461/PKU.DXHX202405154

    15. [15]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    16. [16]

      Xudong Liu Huili Fan Junping Xiao Min Yang Yan Li . Teaching Approaches to the AE + AN Mechanism of Electrophilic Addition Reactions between Olefins and Inorganic Acids in Organic Chemistry. University Chemistry, 2025, 40(7): 367-372. doi: 10.12461/PKU.DXHX202409041

    17. [17]

      Menglan WeiXiaoxia OuYimeng WangMengyuan ZhangFei TengKaixuan Wang . S-scheme heterojunction g-C3N4/Bi2WO6 highly efficient degradation of levofloxacin: performance, mechanism and degradation pathway. Acta Physico-Chimica Sinica, 2025, 41(9): 100105-0. doi: 10.1016/j.actphy.2025.100105

    18. [18]

      Shuang CaoBo ZhongChuanbiao BieBei ChengFeiyan Xu . Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016-0. doi: 10.3866/PKU.WHXB202307016

    19. [19]

      Kexin YanZhaoqi YeLingtao KongHe LiXue YangYahong ZhangHongbin ZhangYi Tang . Seed-Induced Synthesis of Disc-Cluster Zeolite L Mesocrystals with Ultrashort c-Axis: Morphology Control, Decoupled Mechanism, and Enhanced Adsorption. Acta Physico-Chimica Sinica, 2024, 40(9): 2308019-0. doi: 10.3866/PKU.WHXB202308019

    20. [20]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

Metrics
  • PDF Downloads(0)
  • Abstract views(1222)
  • HTML views(316)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return