Citation: Jiang Peng, Liu Yi. Research Progress in Near-Infrared Quantum Dots[J]. Chemistry, ;2016, 79(11): 993-1000. shu

Research Progress in Near-Infrared Quantum Dots

  • Corresponding author: Liu Yi, 
  • Received Date: 31 May 2016
    Available Online: 31 July 2016

    Fund Project:

  • Quantum dots(QDs) have great potential in the application of biomedical detection and metrology due to their excellent optical properties and flexible surface chemistry. Near-infrared(NIR) fluorescent QDs exhibit special superiority for the application of bioimaging because of the low background interference and large penetration depth in the NIR imaging. This article reviewed the synthesis and biomedical imaging applications of the Cd, Pb-containing and Cd, Pb-free NIR QDs, emphatically introduced the development of the novel low toxic NIR QDs.
  • 加载中
    1. [1]

      [1] A Becker, C Hessenius, K Licha et al. Nat. Biotechnol., 2001, 19:327~331.

    2. [2]

      [2] W B Edwards, B Xu, W Akers et al. Bioconjugate. Chem., 2008, 19:192~200.

    3. [3]

      [3] I Georgakoudi, B C Jacobson, M G Muller et al. Cancer Res., 2002, 62:682~687.

    4. [4]

      [4] M Monici. Biotechnol. Annu. Rev., 2005, 11:227~256.

    5. [5]

      [5] V J Pansare, S Hejazi, W J Faenza et al. Chem. Mater., 2012, 24:812~827.

    6. [6]

      [6] T Y Lim, S Kim, A Nakayama et al. Mol. Imaging., 2003, 2:50~64.

    7. [7]

      [7] A M Smith, M C Mancini, S M Nie. Nat. Nanotechnol., 2009, 4:710~711.

    8. [8]

      [8] R Weissleder. Nat. Biotechnol., 2001, 19:316~317.

    9. [9]

      [9] J H Gao, K Chen, R G Xie et al. Bioconjugate. Chem., 2010, 21:604~609.

    10. [10]

      [10] D V Talapin, S Haubold, A L Rogach et al. J. Phys. Chem. B, 2001, 105:2260~2263.

    11. [11]

      [11] C B Murray, D J Norris, M G Bawendi. J. Am. Chem. Soc., 1993, 115:8706~8715.

    12. [12]

      [12] Z A Peng, X G Peng. J. Am. Chem. Soc., 2001, 123:183~184.

    13. [13]

      [13] B Blackman, D M Battaglia, T D Mishima et al. Chem. Mater., 2007, 19:3815~3821.

    14. [14]

      [14] N Gaponik, D V Talapin, A L Rogach et al. J. Phys. Chem. B, 2002, 106:7177~7185.

    15. [15]

      [15] H F Qian, C Q Dong, J F Weng et al. Small, 2006, 2:747~751.

    16. [16]

      [16] D Zhao, Z K He, W H Chan et al.J. Phys. Chem. C, 2009, 113:1293~1300.

    17. [17]

      [17] A L Rogach, T Franzl, T A Klar et al. J. Phys. Chem. C, 2007, 111:14628~14637.

    18. [18]

      [18] C Zhang, X Ji, Y Zhang et al. Anal. Chem., 2013, 85:5843~5849.

    19. [19]

      [19] S J Cho, D Maysinger, M Jain et al. Langmuir, 2007, 23:1974~1980.

    20. [20]

      [20] W Cai, D W Shin, K Chen et al. Nano Lett., 2006, 6:669~676.

    21. [21]

      [21] Y Li, Z Li, X Wang et al. Theranostics, 2012, 2:769~776.

    22. [22]

      [22] J Yao, K Zhang, H Zhu et al. Anal. Chem., 2013, 85:6461~6468.

    23. [23]

      [23] K Zhang, H Zhou, Q Mei et al. J. Am. Chem. Soc., 2011, 133:8424~8427.

    24. [24]

      [24] B Han, J Yuan, E Wang. Anal. Chem., 2009, 81:5569~5573.

    25. [25]

      [25] A M Smith, A M Mohs, S M Nie. Nat. Nanotechnol., 2009, 4:56~63.

    26. [26]

      [26] A Nemchinov, M Kirsanova, N N Hewa-Kasakarage et al. J. Phys. Chem. C, 2008, 112:9301~9307.

    27. [27]

      [27] B Blackman, D Battaglia,X G Peng. Chem. Mater., 2008, 20:4847~4853.

    28. [28]

      [28] S A Ivanov, A Piryatinski, J Nanda et al. J. Am. Chem. Soc., 2007, 129:11708~11719.

    29. [29]

      [29] S Kim, B Fisher, H J Eisler et al. J. Am. Chem. Soc., 2003, 125:11466~11467.

    30. [30]

      [30] S Kim, Y T Lim, E G Soltesz et al. Nat. Biotechnol., 2004, 22:93~97.

    31. [31]

      [31] A J Shuhendler, P Prasad, H-K C Chan et al. ACS Nano, 2011, 5:1958~1966.

    32. [32]

      [32] L H Qu, Z A Peng, X G Peng. Nano Lett., 2001, 1:333~337.

    33. [33]

      [33] M A Hines, G D Scholes. Adv. Mater., 2003, 15:1844~1849.

    34. [34]

      [34] J M Pietryga, R D Schaller, D Werder et al. J. Am. Chem. Soc., 2004, 126:11752~11753.

    35. [35]

      [35] W S Ojo, S Xu, F Delpech et al. Angew. Chem. Int. Ed., 2012, 51:738~741.

    36. [36]

      [36] R G Xie, J X Zhang, F Zhao et al. Chem. Mater., 2010, 22:3820~3822.

    37. [37]

      [37] S Miao, S G Hickey, B Rellinghaus et al. J. Am. Chem. Soc., 2010, 132:5613~5615.

    38. [38]

      [38] D K Harris, P M Allen, H S Han et al. J. Am. Chem. Soc., 2011, 133:4676~4679.

    39. [39]

      [39] K T Yong, H Ding, I Roy et al. ACS Nano, 2009, 3:502~510.

    40. [40]

      [40] J H Gao, K Chen, R G Xie et al. Small, 2010, 6:256~261.

    41. [41]

      [41] R G Xie, D Battaglia, X G Peng. J. Am. Chem. Soc., 2007, 129:15432~15433.

    42. [42]

      [42] L Li, P Reiss. J. Am. Chem. Soc., 2008, 130:11588~11589.

    43. [43]

      [43] P M Allen, B J Walker, M G Bawendi. Angew. Chem. Int. Ed., 2010, 49:760~762.

    44. [44]

      [44] D Battaglia, X G Peng. Nano Lett., 2002, 2:1027~1030.

    45. [45]

      [45] P M Allen, M G Bawendi. J. Am. Chem. Soc., 2008, 130:9240~9241.

    46. [46]

      [46] L Li, T J Daou, I Texier et al. Chem. Mater., 2009, 21:2422~2429.

    47. [47]

      [47] R G Xie, M Rutherford, X G Peng. J. Am. Chem. Soc., 2009, 131:5691~5697.

    48. [48]

      [48] T Pons, E Pic, N Lequeux et al. ACS Nano, 2010, 4:2531~2538.

    49. [49]

      [49] Y Hamanaka, T Ogawa, M Tsuzuki et al. J. Phys. Chem. C, 2011, 115:1786~1792.

    50. [50]

      [50] L Li, A Pandey, D J Werder et al. J. Am. Chem. Soc., 2011, 133:1176~1179.

    51. [51]

      [51] B Chen, H Zhong, W Zhang et al. Adv. Funct. Mater., 2012, 22:2081~2088.

    52. [52]

      [52] J Park, S W Kim. J. Mater. Chem., 2011, 21:3745~3750.

    53. [53]

      [53] D Deng, Y Chen, J Cao et al. Chem. Mater., 2012, 24:3029~3037.

    54. [54]

      [54] H Z Zhong, Y Zhou, M F Ye et al. Chem. Mater., 2008, 20:6434~6443.

    55. [55]

      [55] Y P Du, B Xu, T Fu et al. J. Am. Chem. Soc., 2010, 132:1470~1471.

    56. [56]

      [56] Y Zhang, G S Hong, Y J Zhang et al. ACS Nano, 2012, 6:3695~3702.

    57. [57]

      [57] G Hong, J T Robinson, Y Zhang et al. Angew. Chem. Int. Ed., 2012, 51:9818~9821.

    58. [58]

      [58] P Jiang, Z Q Tian, C N Zhu et al. Chem. Mater., 2012, 24:3~5.

    59. [59]

      [59] P Jiang, C N Zhu, Z L Zhang et al. Biomaterials, 2012, 33:5130~5135.

    60. [60]

      [60] Y P Gu, R Cui, Z L Zhang et al. J. Am. Chem. Soc., 2012, 134:79~82.

    61. [61]

      [61] R Cui, Y P Gu, L Bao et al. Anal. Chem., 2012, 84:8932~8935.

    62. [62]

      [62] C Y Li, Y J Zhang, M Wang et al. Biomaterials, 2014, 35:393~400.

    63. [63]

      [63] Y Wang, X P Yan. Chem. Commun., 2013, 49:3324~3326.

    64. [64]

      [64] Y Shu, P Jiang, D W Pang et al. Nanotechnology, 2015, 26:275701.

    65. [65]

      [65] R Tang, J P Xue, B G Xu et al. ACS Nano, 2015, 9:220~230.

    66. [66]

      [66] Y J Zhang, Y S Liu, C Y Li et al. J. Phys. Chem. C, 2014, 118:4918~4923.

    67. [67]

      [67] P Jiang, C N Zhu, D L Zhu et al. J. Mater. Chem. C, 2015, 3:964~967.

    68. [68]

      [68] P Jiang, D L Zhu, C N Zhu et al. Nanoscale, 2015, 7:19310~19316.

    69. [69]

      [69] P Jiang, R Wang, Z L Chen. RSC Adv., 2015, 5:56789~56793.

    70. [70]

      [70] B Dong, C Li, G Chen et al. Chem. Mater., 2013, 25:2503~2509.

    71. [71]

      [71] A M Derfus, W C W Chan, S N Bhatia. Nano Lett., 2004, 4:11~18.

    72. [72]

      [72] C Kirchner, T Liedl, S Kudera et al. Nano Lett., 2005, 5:331~338.

    73. [73]

      [73] M Ulusoy, A Lavrentieva, J G Walter et al. Toxicol. Res., 2016, 5:126~135.

    74. [74]

      [74] K M Tsoi, Q Dai, B A Alman et al. Acc. Chem. Res., 2013, 46:662~671.

    75. [75]

      [75] K T Yong, W C Law, R Hu et al. Chem. Soc. Rev., 2013, 42:1236~1250.

    76. [76]

      [76] E Oh, R Liu, A Nel et al. Nat. Nanotechnol., 2016, 11:479~486.

    77. [77]

      [77] T S Hauck, R E Anderson, H C Fischer et al. Small, 2010, 6:138~144.

    78. [78]

      [78] H C Fischer, L Liu, K S Pang et al. Adv. Funct. Mater., 2006, 16:1299~1305.

    79. [79]

      [79] Y Lu, Y Su, Y Zhou et al. Biomaterials, 2013, 34:4302~4308.

    80. [80]

      [80] Y Su, F Peng, Z Jiang et al. Biomaterials, 2011, 32:5855~5862.

    81. [81]

      [81] L Ye, K T Yong, L Liu et al. Nat. Nanotechnol., 2012, 7:453~458.

    82. [82]

      [82] J A J Fitzpatrick, S K Andreko, L A Ernst et al. Nano Lett., 2009, 9:2736~2741.

  • 加载中
    1. [1]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    2. [2]

      Ruonan LiShijie LiangYunhua XuCuifen ZhangZheng TangBaiqiao LiuWeiwei Li . Chlorine-Substituted Double-Cable Conjugated Polymers with Near-Infrared Absorption for Low Energy Loss Single-Component Organic Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(8): 2307037-0. doi: 10.3866/PKU.WHXB202307037

    3. [3]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    4. [4]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    5. [5]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    6. [6]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    7. [7]

      Feng Lu Tao Wang Qi Wang . Preparation and Characterization of Water-Soluble Silver Nanoclusters: A New Design and Teaching Practice in Materials Chemistry Experiment. University Chemistry, 2025, 40(4): 375-381. doi: 10.12461/PKU.DXHX202406005

    8. [8]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    9. [9]

      Xian BISisi WANGJinyue ZHANGYujia PENGZhen SHENHua LU . Discovery, development, and perspectives of circularly polarized luminescent materials based on β-isoindigo skeletons. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1049-1057. doi: 10.11862/CJIC.20240456

    10. [10]

      Jian LiYu ZhangRongrong YanKaiyuan SunXiaoqing LiuZishang LiangYinan JiaoHui BuXin ChenJinjin ZhaoJianlin Shi . Highly Efficient, Targeted, and Traceable Perovskite Nanocrystals for Photoelectrocatalytic Oncotherapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-0. doi: 10.1016/j.actphy.2024.100042

    11. [11]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    12. [12]

      Qin Li Kexin Yang Qinglin Yang Xiangjin Zhu Xiaole Han Tao Huang . Illuminating Chlorophyll: Innovative Chemistry Popularization Experiment. University Chemistry, 2024, 39(9): 359-368. doi: 10.3866/PKU.DXHX202309059

    13. [13]

      Zehua ZhangHaitao YuYanyu Qi . Design Strategy for Thermally Activated Delayed Fluorescence Materials with Multiple Resonance Effect. Acta Physico-Chimica Sinica, 2025, 41(1): 100006-0. doi: 10.3866/PKU.WHXB202309042

    14. [14]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    15. [15]

      Xue WuYupeng LiuBingzhe WangLingyun LiZhenjian LiQingcheng WangQuansheng ChengGuichuan XingSongnan Qu . Rationally assembling different surface functionalized carbon dots for enhanced near-infrared tumor photothermal therapy. Acta Physico-Chimica Sinica, 2025, 41(9): 100109-0. doi: 10.1016/j.actphy.2025.100109

    16. [16]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    17. [17]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    18. [18]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    19. [19]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    20. [20]

      Yanxi LIUMengjia XUHaonan CHENQuan LIUYuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423

Metrics
  • PDF Downloads(27)
  • Abstract views(1122)
  • HTML views(143)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return