Citation: Zhang Haifeng, Fan Xue. Research Progress in Membrane Fouling in Membrane Bioreactor Based on XDLVO Approach[J]. Chemistry, ;2016, 79(7): 604-609. shu

Research Progress in Membrane Fouling in Membrane Bioreactor Based on XDLVO Approach

  • Received Date: 14 November 2015
    Available Online: 11 January 2016

    Fund Project:

  • The widespread application of MBRs is restricted by membrane fouling; therefore, the investigation of fouling mechanism is essential to the development of effective fouling control strategies in the application of MBRs. XDLVO theory explains the contribution of van der Waals force, polar force and electrostatic double layer force in the process of membrane fouling and effectively reveals the membrane fouling mechanism. In this paper, XDLVO theory was described, and then the short-range interfacial interaction in the formation of gel layer and cake layer was analyzed by applying this theory. Finally, the research progress in membrane fouling based on XDLVO theory was reviewed and prospected.
  • 加载中
    1. [1]

      [1] H F Zhang, Z P Wang, L H Zhang et al. Bioresour. Technol., 2014, 171:16~21.

    2. [2]

      [2] 张海丰, 刘洪鹏, 赵贵龙等. 东北电力大学学报, 2013, 33(4):1~5.

    3. [3]

      [3] H C Hong, M J Zhang, Y M He et al. Bioresour. Technol., 2014, 166:295~302.

    4. [4]

      [4] F Meng, S R Chae, A Drews et al. Water Res., 2009, 43(6):1489~1512.

    5. [5]

      [5] X Y Su, Y Tian, H Li et al. Bioresour. Technol., 2013, 128:586~592.

    6. [6]

      [6] E Germain, F Nelles, A Drews et al. Water Res., 2007, 41(5):1038~1044.

    7. [7]

      [7] V T Nguyen, T W R Chia, M S Turner et al. J. Microbiol. Methods, 2011, 86(1):89~96.

    8. [8]

      [8] H F Zhang. Environ. Eng. Sci., 2009, 26(6):1115~1122.

    9. [9]

      [9] 赵军, 张海丰, 王亮. 化工进展, 2009, 8:1473~1477.

    10. [10]

      [10] H C Hong, W Peng, M J Zhang et al. Bioresour. Technol., 2013, 146:7~14.

    11. [11]

      [11] C J van Oss. Colloids Surf. B, 1995, 5(3):91~110.

    12. [12]

      [12] L Feng, X F Li, G C Du et al. Proc. Biochem., 2009, 44(11):1289~1292.

    13. [13]

      [13] C J van Oss, A Docoslis, W Wu et al. Colloids Surf. B, 1999, 14(1):99~104.

    14. [14]

      [14] Y Zhang, M J Zhang, F Y Wang et al. Bioresour. Technol., 2014, 152:7~14.

    15. [15]

      [15] C J van Oss. Colloids Surf. A, 1993, 78:1~49.

    16. [16]

      [16] C J van Oss, R J Good. J. Protein Chem., 1988, 7(2):179~183.

    17. [17]

      [17] S Bhattacharjee, A Sharma, P K Bhattacharya. Langmuir, 1994, 10(12):4710~4720.

    18. [18]

      [18] R I Hogg, T W Healy, D W Fuerstenau. Transac. Faraday Soc., 1966, 62:1638~1651.

    19. [19]

      [19] J A Brant, A E Childress. J. Membr. Sci., 2002, 203(1):257~273.

    20. [20]

      [20] J A Redman, S L Walker, M Elimelech. Environ. Sci. Technol., 2004, 38(6):1777~1785.

    21. [21]

      [21] E M Hoek, S Bhattacharjee, M Elimelech. Langmuir, 2003, 19(11):4836~4847.

    22. [22]

      [22] X M Wang, T D Waite. Environ. Sci. Technol., 2009, 43(24):9341~9347.

    23. [23]

      [23] N Yang, X Wen, T D Waite et al. J. Membr. Sci., 2011, 366(1):192~202.

    24. [24]

      [24] K Xiao, Y X Shen, X Huang. J. Membr. Sci., 2013, 427:139~149.

    25. [25]

      [25] 张万友, 刘扬扬, 张海丰等. 东北电力大学学报, 2013, 33(4):11~14.

    26. [26]

      [26] D S Kim, J S Kang, Y M Lee. Sep. Sci. Technol., 2005, 39(4):833~854.

    27. [27]

      [27] A Weis, M R Bird, M Nystr m et al. Desalination, 2005, 175(1):73~85.

    28. [28]

      [28] A Santos, S Judd. Sep. Sci. Technol., 2010, 45(7):850~857.

    29. [29]

      [29] J Zhang, Q Wang, Z Wang et al. J. Membr. Sci., 2014, 466(18):293~301.

    30. [30]

      [30] H Y Yu, M X Hu, Z K Xu et al. Sep. Purif. Technol., 2005, 45(1):8~15.

    31. [31]

      [31] 袁栋栋, 樊耀波, 徐国良等. 膜科学与技术, 2010, 2(30):97~103.

    32. [32]

      [32] S Ognier, C Wisniewski, A Grasmick. J. Membr. Sci., 2004, 229:171~177.

    33. [33]

      [33] S Scuras, G T Daigger, C P L Grady Jr. Water Sci. Technol., 1998, 37(4~5):.243~250.

    34. [34]

      [34] T Lin, Z J Lu, W Chen. J. Membr. Sci., 2014, 461:49~58.

    35. [35]

      [35] T H Bae, T M Tak. J. Membr. Sci., 2005, 264(1):151~160.

    36. [36]

      [36] R Bai, H F Leow. Sep. Purif. Technol., 2002, 29(2):89~98.

    37. [37]

      [37] F G Meng, H M Zhang, F L Yang et al. Environ. Sci. Technol., 2007, 41(11):4065~4070.

    38. [38]

      [38] H J Lin, B Q Liao, J R Chen et al. Bioresour. Technol., 2011, 102(3):2373~2379.

    39. [39]

      [39] J A Brant, A E Childress. J. Membr. Sci., 2002, 203(1~2):257~273.

    40. [40]

      [40] Y Tian, Z P Li, Y Ding et al. Water Res., 2013, 47(6):2015~2024.

    41. [41]

      [41] A L Ahmad, Y N H Mat, C J C Derek et al. J. Membr. Sci., 2013, 446:341~349.

    42. [42]

      [42] A Subramani, X Huang, E M V Hoek. J. Colloid Interf. Sci., 2009, 336(1):13~20.

    43. [43]

      [43] N Park, B Kwon, I S Kim et al. J. Membr. Sci., 2005, 258(1~2):43~54.

    44. [44]

      [44] W Kuhnl, A Piry, V Kaufinann et al. J. Membr. Sci., 2010, 352(1~2):107~115.

    45. [45]

      [45] J Kim, W Shan, S H R Davies et al. Environ. Sci. Technol., 2009, 43(14):5488~5494.

    46. [46]

      [46] 姚淑娣, 高欣玉, 郭本华等. 环境科学, 2012, 33(6):1885~1890.

    47. [47]

      [47] Y Zhang, M J Zhang, F Y Wang et al. Bioresour. Technol., 2014, 152:7~14.

    48. [48]

      [48] Y Ding, Y Tian, Z P Li et al. Desalination, 2013, 331:62~68.

    49. [49]

      [49] F Y Wang, M J Zhang, W Peng et al. Bioresour. Technol., 2014, 156:35~41.

    50. [50]

      [50] 赵应许, 纵瑞强, 高欣玉等. 环境科学, 2014, 35(4):1344~1350.

    51. [51]

      [51] H J Lin, M J Zhang, R W Mei et al. Bioresour. Technol., 2014, 171:247~252.

    52. [52]

      [52] L H Zhao, M J Zhang, Y M He et al. Bioresour. Technol., 2016, 200:451~457.

    53. [53]

      [53] H H Cai, H Fan, L H Zhao et al. J. Colloid Interf. Sci., 2009, 336(1):13~20.

    54. [54]

      [54] T Lin, B Shen, W Chen et al. Desalination, 2014, 332(1):100~108.

    55. [55]

      [55] S Wang, G Guillen, E M V Hoek. Environ. Sci. Technol., 2005, 39(17):6461~6469.

  • 加载中
    1. [1]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    2. [2]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    3. [3]

      Xueting CaoShuangshuang ChaMing Gong . Interfacial Electrical Double Layer in Electrocatalytic Reactions: Fundamentals, Characterizations and Applications. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-0. doi: 10.1016/j.actphy.2024.100041

    4. [4]

      Xiao Liu Guangzhong Cao Mingli Gao Hong Wu Hongyan Feng Chenxiao Jiang Tongwen Xu . Seawater Salinity Gradient Energy’s Job Application in the Field of Membranes. University Chemistry, 2024, 39(9): 279-282. doi: 10.3866/PKU.DXHX202306043

    5. [5]

      Shuyu Liu Xiaomin Sun Bohan Song Gaofeng Zeng Bingbing Du Chongshen Guo Cong Wang Lei Wang . Design and Fabrication of Phospholipid-Vesicle-based Artificial Cells towards Biomedical Applications. University Chemistry, 2024, 39(11): 182-188. doi: 10.12461/PKU.DXHX202404113

    6. [6]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    7. [7]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    8. [8]

      Yingying Chen Di Xu Congmin Wang . Exploration and Practice of the “Four-Level, Three-Linkage” General Chemistry Course System. University Chemistry, 2024, 39(8): 119-125. doi: 10.3866/PKU.DXHX202401057

    9. [9]

      Yikai WangXiaolin JiangHaoming SongNan WeiYifan WangXinjun XuCuihong LiHao LuYahui LiuZhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-0. doi: 10.3866/PKU.WHXB202406007

    10. [10]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

    11. [11]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    12. [12]

      Tianqi BaiKun HuangFachen LiuRuochen ShiWencai RenSongfeng PeiPeng GaoZhongfan Liu . Nanoscale Mechanism of Microstructure-Dependent Thermal Diffusivity in Thick Graphene Sheets. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-0. doi: 10.3866/PKU.WHXB202404024

    13. [13]

      Jiahao LuXin MingYingjun LiuYuanyuan HaoPeijuan ZhangSonghan ShiYi MaoYue YuShengying CaiZhen XuChao Gao . High-Precision and Reliable Thermal Conductivity Measurement for Graphene Films Based on an Improved Steady-State Electric Heating Method. Acta Physico-Chimica Sinica, 2025, 41(5): 100045-0. doi: 10.1016/j.actphy.2025.100045

    14. [14]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    15. [15]

      Shanghua LiMalin LiXiwen ChiXin YinZhaodi LuoJihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003

    16. [16]

      Da WangXiaobin YinJianfang WuYaqiao LuoSiqi Shi . All-Solid-State Lithium Cathode/Electrolyte Interfacial Resistance: From Space-Charge Layer Model to Characterization and Simulation. Acta Physico-Chimica Sinica, 2024, 40(7): 2307029-0. doi: 10.3866/PKU.WHXB202307029

    17. [17]

      Yixuan WangCanhui ZhangXingkun WangJiarui DuanKecheng TongShuixing DaiLei ChuMinghua Huang . Engineering Carbon-Chainmail-Shell Coated Co9Se8 Nanoparticles as Efficient and Durable Catalysts in Seawater-Based Zn-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2305004-0. doi: 10.3866/PKU.WHXB202305004

    18. [18]

      Shi-Yu LuWenzhao DouJun ZhangLing WangChunjie WuHuan YiRong WangMeng Jin . Amorphous-Crystalline Interfaces Coupling of CrS/CoS2 Few-Layer Heterojunction with Optimized Crystallinity Boosted for Water-Splitting and Methanol-Assisted Energy-Saving Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(8): 2308024-0. doi: 10.3866/PKU.WHXB202308024

    19. [19]

      Xiaojing TianZhichun HuangQingsong ZhangXu WangNing YangNanping Deng . PNIPAm Thermo-Responsive Nanofibers Mats: Morphological Stability and Response Behavior under Cross-Linking. Acta Physico-Chimica Sinica, 2024, 40(4): 2304037-0. doi: 10.3866/PKU.WHXB202304037

    20. [20]

      Yue ZhangBao LiLixin Wu . GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions. Acta Physico-Chimica Sinica, 2024, 40(5): 2305038-0. doi: 10.3866/PKU.WHXB202305038

Metrics
  • PDF Downloads(1)
  • Abstract views(521)
  • HTML views(89)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return