Citation:
Luo Ying, Qi Jibing, Guo Fang. Research Progress in the Regeneration Mechanism of Chelated Iron Desulfurization Solution[J]. Chemistry,
;2016, 79(7): 597-603.
-
The chelated iron desulfurization has realized the catalyst recycling, in which ferrous ion regeneration is the core of the whole technology. In the regeneration process, researchers found the reaction to be first order, second order in Fe2+, and even found a transition in reaction order from 1 to 2, due to the different reaction rate constant ratio. The ferrous ion can be oxidized by molecular oxygen (O2) and its derivatives (such as superoxide (Hn+O2·), hydrogen peroxide (H2O2), hydroxyl radical (OH·)) or high valence state of iron containing oxygen intermediates (such as (L)Fe4+=O, (L·+) Fe4+=O and (L)nFe4+(OH)(OOH)). The oxidation mechanism of ferrous NTA appeared to be similar to that of ferrous chelates of EDTA and HEDTA. In the regeneration process, there was a suitable pH range for the ligand. When ligand NTA was excessive, its activity depends on the pH and the concentration of NTA, and the differences of the NTA concentration lead to different reaction pathways. In the oxidation reactions, the chelate degradation occurred due to the excess oxygen consumption by the ligand, which leads to the deviation of the stoichiometry.
-
-
-
[1]
[1] 杜灿屏, 麻生明. 有机化学学科前沿与展望. 北京:科学出版社, 2011.
-
[2]
[2] S Piche, F Larachi. Chem. Eng. Sci., 2006, 61:3452~3462.
-
[3]
[3] S Piché F Larachi. Chem. Eng. Sci., 2006, 61:7171~7176.
-
[4]
[4] H J Wubs, A A C M Beenackers. Ind. Eng. Chem. Res., 1993, 32:2580~2594.
-
[5]
[5] 胡尧良. 石油炼制与化工, 2008, 39:14~20.
-
[6]
[6] 王开岳. 石油与天然气化工, 1995, 24:178~184.
-
[7]
[7] J F Demmink, I C F Van Gils, A Beenackers. Ind. Eng. Chem. Res., 1997, 36:4914~4927.
-
[8]
[8] T Kaden, S Fallab. Advances in the Chemistry of Coordination Compounds. New York:MacMillan Co., 1961, 196:654~663.
-
[9]
[9] Y Kurimura, R Ochiai, N Matsuura. Bull. Chem. Soc. Jpn. 1968, 41:2234~2239.
-
[10]
[10] S O Travin, Y I Skurlatov. Russ. J. Phys. Chem., 1981, 55:815.
-
[11]
[11] C Bull, G J McClune, J A Fee. J. Am. Chem. Soc., 1983, 105:5290~5300.
-
[12]
[12] E Sada, H Kumazawa, H Machida. Ind. Eng. Chem. Res., 1987, 26:1468~1472.
-
[13]
[13] E R Brown, J D Mazzarella. Electroanal. Chem., 1987, 222:173~192.
-
[14]
[14] V Zang, R Van Eldik. Inorg. Chem., 1990, 29:1705~1711.
-
[15]
[15] S Sabine, V E Rudi. Inorg. Chem., 1997, 36:4115~4120.
-
[16]
[16] A P Purmal, Y I Skurlatov, S O Travin. Bull. Acad. USSR Div. Chem. Sci. (Engl. Transl.), 1980, 29:315~320.
-
[17]
[17] X Liu, D T Sawyer, S A Bedell et al. Ligand degradation in the iron/dioxygen-induced dehydrogenation of H2S. Seventh Sulfur Recovery Conference, Austin, TX. 1995, 24.
-
[18]
[18] C Kang, A Sobkowiak, D T Sawyer. Inorg. Chem., 1994, 33:79~82.
-
[19]
[19] H Sugimoto, D T Sawyer. J. Am. Chem. Soc., 1984, 106):4283~4285.
-
[20]
[20] А А Неяглов, Н. Г Дигуров, Г. В.В. Бухаркина. Очистка широкои фракции легких угпёъоаороаов газового конаёнсата месторожаения от сернистых соединении. лр. Кцнет. Кат., 1991, 32:541~547.
-
[21]
[21] C Walling, M Kurz, H J Schugar. Inorg. Chem., 1970, 9:931~937.
-
[22]
[22] C Walling. Acc. Chem. Res., 1975, 8:125~131.
-
[23]
[23] J M C Gutteridge. Free Radical Res., 1990, 9:119~125.
-
[24]
[24] J D Rush, W H Koppenol. J. Am. Chem. Soc., 1988, 110:4957~4963.
-
[25]
[25] W H Koppenol. Free Radical. Biol. Med., 1985, 1:281~285.
-
[26]
[26] D T Sawyer, C Kang, A Llobet et al. J. Am. Chem. Soc., 1993, 115:5817~5818.
-
[27]
[27] E Luzzatto, H Cohen, C Stockheim et al. Free Radical Res., 1995, 23:453~463.
-
[28]
[28] J D Rush, W H Koppenol. J. Biol. Chem., 1986, 261:6730~6733.
-
[29]
[29] I Yamazaki, L H Piette. J. Biol. Chem., 1990, 265:13589~13594.
-
[30]
[30] I Yamazaki, L H Piette. J. Am. Chem. Soc., 1991, 113:7588~7593.
-
[31]
[31] S Rahhal, H W Richter. J. Am. Chem. Soc., 1988, 110:3126~3133.
-
[32]
[32] J T Groves. Structure, Mechanism and Biochemistry. 1985.
-
[33]
[33] J T Groves, Y Watanabe. J. Am. Chem. Soc., 1986, 108:7834~7836.
-
[34]
[34] H C Tung, C Kang, D T Sawyer. J. Am. Chem. Soc., 1992, 114:3445~3455.
-
[35]
[35] H Bamnolker, H Cohen, D Meyerstein. Free Radical Res., 1991, 15:231~241.
-
[36]
[36] H J Wubs, A A C M Beenackers. AIChE J., 1994, 40:433~444.
-
[37]
[37] J F Demmink, A Beenackers. Ind. Eng. Chem. Res., 1997, 36:1989~2005.
-
[38]
[38] J F Demmink, A Beenackers. Ind. Eng. Chem. Res., 1998, 37(4):1444~1453.
-
[39]
[39] A E Martell, R J Motekaitis. Determination and use of stability constraints. VCH Publishers:New York, 1988.
-
[40]
[40] M J Burkitt, B C Gilbert. Free Radical Res., 1991, 14:107~123.
-
[41]
[41] N H Clark, A E Martell. Inorg. Chem., 1988, 27:1297~1298.
-
[42]
[42] G C Blytas, Z Diaz. USP:4356155, 1982.
-
[43]
[43] Z Diaz. USP:4515764, 1985.
-
[44]
[44] D McManus, F R Kin. USP:4622212, 1986.
-
[45]
[45] R J Motekaitis, A E Martell. J. Coord. Chem., 1994, 31:67~78.
-
[1]
-
-
-
[1]
Xingyu Liao , Xiangming Yi , Kin Shing Chan . 追凶之路上的怪客——硫化氢. University Chemistry, 2025, 40(6): 172-176. doi: 10.12461/PKU.DXHX202408039
-
[2]
Hengyi ZHU , Liyun JU , Haoyue ZHANG , Jiaxin DU , Yutong XIE , Li SONG , Yachao JIN , Mingdao ZHANG . Efficient regeneration of waste LiNi0.5Co0.2Mn0.3O2 cathode toward high-performance Li-ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 625-638. doi: 10.11862/CJIC.20240358
-
[3]
Zijian Zhao , Yanxin Shi , Shicheng Li , Wenhong Ruan , Fang Zhu , Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094
-
[4]
Xinxin Wu . 基础有机化学教学中自由基重排反应的课程设计及其课程思政元素的融入. University Chemistry, 2025, 40(6): 316-325. doi: 10.12461/PKU.DXHX202408055
-
[5]
Linfang ZHANG , Wenzhu YIN , Gui YIN . A 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran-based near-infrared fluorescence probe for the detection of hydrogen sulfide and imaging of living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 540-548. doi: 10.11862/CJIC.20240405
-
[6]
Yuan GAO , Yiming LIU , Chunhui WANG , Zhe HAN , Chaoyue FAN , Jie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271
-
[7]
Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018
-
[8]
Min LIU , Huapeng RUAN , Zhongtao FENG , Xue DONG , Haiyan CUI , Xinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362
-
[9]
Tongyan Yu , Pan Xu . Visible-Light Photocatalyzed Radical Rearrangement Reaction. University Chemistry, 2025, 40(7): 169-176. doi: 10.12461/PKU.DXHX202409070
-
[10]
Jiajia Li , Xiangyu Zhang , Zhihan Yuan , Zhengyang Qian , Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073
-
[11]
.
CCS Chemistry | 超分子活化底物为自由基促进高效选择性光催化氧化
. CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -. -
[12]
Yinjie Xu , Suiqin Li , Lihao Liu , Jiahui He , Kai Li , Mengxin Wang , Shuying Zhao , Chun Li , Zhengbin Zhang , Xing Zhong , Jianguo Wang . Enhanced Electrocatalytic Oxidation of Sterols using the Synergistic Effect of NiFe-MOF and Aminoxyl Radicals. Acta Physico-Chimica Sinica, 2024, 40(3): 2305012-0. doi: 10.3866/PKU.WHXB202305012
-
[13]
Yang ZHOU , Lili YAN , Wenjuan ZHANG , Pinhua RAO . Thermal regeneration of biogas residue biochar and the ammonia nitrogen adsorption properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1574-1588. doi: 10.11862/CJIC.20250032
-
[14]
Zhongyan Cao , Shengnan Jin , Yuxia Wang , Yiyi Chen , Xianqiang Kong , Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186
-
[15]
Danqing Wu , Jiajun Liu , Tianyu Li , Dazhen Xu , Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087
-
[16]
Baitong Wei , Jinxin Guo , Xigong Liu , Rongxiu Zhu , Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003
-
[17]
Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101
-
[18]
Lisha LEI , Wei YONG , Yiting CHENG , Yibo WANG , Wenchao HUANG , Junhuan ZHAO , Zhongjie ZHAI , Yangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202
-
[19]
Lina Feng , Guoyu Jiang , Xiaoxia Jian , Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171
-
[20]
Jihua Deng , Xinshi Wu , Dichang Zhong . Exploration of Green Teaching and Ideological and Political Education in Chemical Experiment of “Preparation of Ammonium Ferrous Sulfate”. University Chemistry, 2024, 39(10): 325-329. doi: 10.12461/PKU.DXHX202405046
-
[1]
Metrics
- PDF Downloads(2)
- Abstract views(466)
- HTML views(136)