Citation: Luo Ying, Qi Jibing, Guo Fang. Research Progress in the Regeneration Mechanism of Chelated Iron Desulfurization Solution[J]. Chemistry, ;2016, 79(7): 597-603. shu

Research Progress in the Regeneration Mechanism of Chelated Iron Desulfurization Solution

  • Received Date: 8 October 2015
    Available Online: 16 February 2016

    Fund Project:

  • The chelated iron desulfurization has realized the catalyst recycling, in which ferrous ion regeneration is the core of the whole technology. In the regeneration process, researchers found the reaction to be first order, second order in Fe2+, and even found a transition in reaction order from 1 to 2, due to the different reaction rate constant ratio. The ferrous ion can be oxidized by molecular oxygen (O2) and its derivatives (such as superoxide (Hn+O2·), hydrogen peroxide (H2O2), hydroxyl radical (OH·)) or high valence state of iron containing oxygen intermediates (such as (L)Fe4+=O, (L·+) Fe4+=O and (L)nFe4+(OH)(OOH)). The oxidation mechanism of ferrous NTA appeared to be similar to that of ferrous chelates of EDTA and HEDTA. In the regeneration process, there was a suitable pH range for the ligand. When ligand NTA was excessive, its activity depends on the pH and the concentration of NTA, and the differences of the NTA concentration lead to different reaction pathways. In the oxidation reactions, the chelate degradation occurred due to the excess oxygen consumption by the ligand, which leads to the deviation of the stoichiometry.
  • 加载中
    1. [1]

      [1] 杜灿屏, 麻生明. 有机化学学科前沿与展望. 北京:科学出版社, 2011.

    2. [2]

      [2] S Piche, F Larachi. Chem. Eng. Sci., 2006, 61:3452~3462.

    3. [3]

      [3] S Piché F Larachi. Chem. Eng. Sci., 2006, 61:7171~7176.

    4. [4]

      [4] H J Wubs, A A C M Beenackers. Ind. Eng. Chem. Res., 1993, 32:2580~2594.

    5. [5]

      [5] 胡尧良. 石油炼制与化工, 2008, 39:14~20.

    6. [6]

      [6] 王开岳. 石油与天然气化工, 1995, 24:178~184.

    7. [7]

      [7] J F Demmink, I C F Van Gils, A Beenackers. Ind. Eng. Chem. Res., 1997, 36:4914~4927.

    8. [8]

      [8] T Kaden, S Fallab. Advances in the Chemistry of Coordination Compounds. New York:MacMillan Co., 1961, 196:654~663.

    9. [9]

      [9] Y Kurimura, R Ochiai, N Matsuura. Bull. Chem. Soc. Jpn. 1968, 41:2234~2239.

    10. [10]

      [10] S O Travin, Y I Skurlatov. Russ. J. Phys. Chem., 1981, 55:815.

    11. [11]

      [11] C Bull, G J McClune, J A Fee. J. Am. Chem. Soc., 1983, 105:5290~5300.

    12. [12]

      [12] E Sada, H Kumazawa, H Machida. Ind. Eng. Chem. Res., 1987, 26:1468~1472.

    13. [13]

      [13] E R Brown, J D Mazzarella. Electroanal. Chem., 1987, 222:173~192.

    14. [14]

      [14] V Zang, R Van Eldik. Inorg. Chem., 1990, 29:1705~1711.

    15. [15]

      [15] S Sabine, V E Rudi. Inorg. Chem., 1997, 36:4115~4120.

    16. [16]

      [16] A P Purmal, Y I Skurlatov, S O Travin. Bull. Acad. USSR Div. Chem. Sci. (Engl. Transl.), 1980, 29:315~320.

    17. [17]

      [17] X Liu, D T Sawyer, S A Bedell et al. Ligand degradation in the iron/dioxygen-induced dehydrogenation of H2S. Seventh Sulfur Recovery Conference, Austin, TX. 1995, 24.

    18. [18]

      [18] C Kang, A Sobkowiak, D T Sawyer. Inorg. Chem., 1994, 33:79~82.

    19. [19]

      [19] H Sugimoto, D T Sawyer. J. Am. Chem. Soc., 1984, 106):4283~4285.

    20. [20]

      [20] А А Неяглов, Н. Г Дигуров, Г. В.В. Бухаркина. Очистка широкои фракции легких угпёъоаороаов газового конаёнсата месторожаения от сернистых соединении. лр. Кцнет. Кат., 1991, 32:541~547.

    21. [21]

      [21] C Walling, M Kurz, H J Schugar. Inorg. Chem., 1970, 9:931~937.

    22. [22]

      [22] C Walling. Acc. Chem. Res., 1975, 8:125~131.

    23. [23]

      [23] J M C Gutteridge. Free Radical Res., 1990, 9:119~125.

    24. [24]

      [24] J D Rush, W H Koppenol. J. Am. Chem. Soc., 1988, 110:4957~4963.

    25. [25]

      [25] W H Koppenol. Free Radical. Biol. Med., 1985, 1:281~285.

    26. [26]

      [26] D T Sawyer, C Kang, A Llobet et al. J. Am. Chem. Soc., 1993, 115:5817~5818.

    27. [27]

      [27] E Luzzatto, H Cohen, C Stockheim et al. Free Radical Res., 1995, 23:453~463.

    28. [28]

      [28] J D Rush, W H Koppenol. J. Biol. Chem., 1986, 261:6730~6733.

    29. [29]

      [29] I Yamazaki, L H Piette. J. Biol. Chem., 1990, 265:13589~13594.

    30. [30]

      [30] I Yamazaki, L H Piette. J. Am. Chem. Soc., 1991, 113:7588~7593.

    31. [31]

      [31] S Rahhal, H W Richter. J. Am. Chem. Soc., 1988, 110:3126~3133.

    32. [32]

      [32] J T Groves. Structure, Mechanism and Biochemistry. 1985.

    33. [33]

      [33] J T Groves, Y Watanabe. J. Am. Chem. Soc., 1986, 108:7834~7836.

    34. [34]

      [34] H C Tung, C Kang, D T Sawyer. J. Am. Chem. Soc., 1992, 114:3445~3455.

    35. [35]

      [35] H Bamnolker, H Cohen, D Meyerstein. Free Radical Res., 1991, 15:231~241.

    36. [36]

      [36] H J Wubs, A A C M Beenackers. AIChE J., 1994, 40:433~444.

    37. [37]

      [37] J F Demmink, A Beenackers. Ind. Eng. Chem. Res., 1997, 36:1989~2005.

    38. [38]

      [38] J F Demmink, A Beenackers. Ind. Eng. Chem. Res., 1998, 37(4):1444~1453.

    39. [39]

      [39] A E Martell, R J Motekaitis. Determination and use of stability constraints. VCH Publishers:New York, 1988.

    40. [40]

      [40] M J Burkitt, B C Gilbert. Free Radical Res., 1991, 14:107~123.

    41. [41]

      [41] N H Clark, A E Martell. Inorg. Chem., 1988, 27:1297~1298.

    42. [42]

      [42] G C Blytas, Z Diaz. USP:4356155, 1982.

    43. [43]

      [43] Z Diaz. USP:4515764, 1985.

    44. [44]

      [44] D McManus, F R Kin. USP:4622212, 1986.

    45. [45]

      [45] R J Motekaitis, A E Martell. J. Coord. Chem., 1994, 31:67~78.

  • 加载中
    1. [1]

      Xingyu Liao Xiangming Yi Kin Shing Chan . 追凶之路上的怪客——硫化氢. University Chemistry, 2025, 40(6): 172-176. doi: 10.12461/PKU.DXHX202408039

    2. [2]

      Hengyi ZHULiyun JUHaoyue ZHANGJiaxin DUYutong XIELi SONGYachao JINMingdao ZHANG . Efficient regeneration of waste LiNi0.5Co0.2Mn0.3O2 cathode toward high-performance Li-ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 625-638. doi: 10.11862/CJIC.20240358

    3. [3]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    4. [4]

      Xinxin Wu . 基础有机化学教学中自由基重排反应的课程设计及其课程思政元素的融入. University Chemistry, 2025, 40(6): 316-325. doi: 10.12461/PKU.DXHX202408055

    5. [5]

      Linfang ZHANGWenzhu YINGui YIN . A 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran-based near-infrared fluorescence probe for the detection of hydrogen sulfide and imaging of living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 540-548. doi: 10.11862/CJIC.20240405

    6. [6]

      Yuan GAOYiming LIUChunhui WANGZhe HANChaoyue FANJie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271

    7. [7]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    8. [8]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    9. [9]

      Tongyan Yu Pan Xu . Visible-Light Photocatalyzed Radical Rearrangement Reaction. University Chemistry, 2025, 40(7): 169-176. doi: 10.12461/PKU.DXHX202409070

    10. [10]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    11. [11]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    12. [12]

      Yinjie XuSuiqin LiLihao LiuJiahui HeKai LiMengxin WangShuying ZhaoChun LiZhengbin ZhangXing ZhongJianguo Wang . Enhanced Electrocatalytic Oxidation of Sterols using the Synergistic Effect of NiFe-MOF and Aminoxyl Radicals. Acta Physico-Chimica Sinica, 2024, 40(3): 2305012-0. doi: 10.3866/PKU.WHXB202305012

    13. [13]

      Yang ZHOULili YANWenjuan ZHANGPinhua RAO . Thermal regeneration of biogas residue biochar and the ammonia nitrogen adsorption properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1574-1588. doi: 10.11862/CJIC.20250032

    14. [14]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    15. [15]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    16. [16]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    17. [17]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    18. [18]

      Lisha LEIWei YONGYiting CHENGYibo WANGWenchao HUANGJunhuan ZHAOZhongjie ZHAIYangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202

    19. [19]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    20. [20]

      Jihua Deng Xinshi Wu Dichang Zhong . Exploration of Green Teaching and Ideological and Political Education in Chemical Experiment of “Preparation of Ammonium Ferrous Sulfate”. University Chemistry, 2024, 39(10): 325-329. doi: 10.12461/PKU.DXHX202405046

Metrics
  • PDF Downloads(2)
  • Abstract views(466)
  • HTML views(136)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return