Citation: Qiu Bing, Jing Yuanyuan, Yang Xinzheng. Progress in the Theoretical Study of Natural Photosynthetic Oxygen Evolution[J]. Chemistry, ;2016, 79(7): 579-583. shu

Progress in the Theoretical Study of Natural Photosynthetic Oxygen Evolution

  • Corresponding author: Jing Yuanyuan,  Yang Xinzheng, 
  • Received Date: 12 December 2015
    Available Online: 3 March 2016

    Fund Project:

  • Photosynthetic oxygen-evolving complex(OEC) is the catalytic center for water oxidation embedded in Photosystem II. The study of OEC can not only improve the understanding of the photosynthesis process, but also provide a basis for developing stable, efficient and low-cost artificial catalysts for water oxidation. Because of the complexity of OEC, modern computational quantum chemistry plays an important role in studying its structure, properties and catalytic mechanism. This paper reviewed recent theoretical study progress in natural water oxidation catalyst, summarized the major tasks in the theoretical studies, and pointed out the directions for further theoretical research.
  • 加载中
    1. [1]

      [1] R Eisenberg. Science, 2009, 324:44~45.

    2. [2]

      [2] N Cox, D A Pantazis, F Neese et al. Interface Focus,2015, 5:20150009.

    3. [3]

      [3] B Kok, B Forbush, M McGloin. Photochem. Photobiol., 1970, 11:457~475.

    4. [4]

      [4] J R Shen. Annu. Rev. Plant Biol., 2015, 66:23~48.

    5. [5]

      [5] J Yano, V Yachandra. Chem. Rev., 2014, 114:4175~4205.

    6. [6]

      [6] V Krewald, M Retegan, D A Pantazis. Top. Curr. Chem., 2016, 371:23~48.

    7. [7]

      [7] V Krewald, M Retegan, N Cox et al. Chem. Sci., 2015, 6:1676~1695.

    8. [8]

      [8] A Zouni, H T Witt, J Kern et al. Nature, 2001, 409:739~743.

    9. [9]

      [9] N Kamiya, J R Shen. PNAS, 2003, 100:98~103.

    10. [10]

      [10] K N Ferreira, T M Iverson, K Maghlaoui et al. Science, 2004, 303:1831~1838.

    11. [11]

      [11] B Loll, J Kern, W Saenger et al. Nature, 2005, 438:1040~1044.

    12. [12]

      [12] A Guskov, J Kern, A Gabdulkhakov et al. Nat. Struct. Mol. Biol., 2009, 16:334~342.

    13. [13]

      [13] Y Umena, K Kawakami, J R Shen et al. Nature,2011, 473:55~60.

    14. [14]

      [14] S Luber, I Rivalta, Y Umena et al. Biochemistry, 2011, 50:6308~6311.

    15. [15]

      [15] A Galstyan, A Robertazzi, E W Knapp. J. Am. Chem. Soc., 2012, 134:7442~7449.

    16. [16]

      [16] Y Kurashige, G K Chan, T Yanai. Nat. Chem., 2013, 5; 660~666.

    17. [17]

      [17] M Suga, F Akita, K Hirata et al. Nature, 2015, 517:99~103.

    18. [18]

      [18] M Askerka, D J Vinyard, J Wang et al. Biochemistry, 2015, 54:1713~1716.

    19. [19]

      [19] W Ames, D A Pantazis, V Krewald et al. J. Am. Chem. Soc., 2011, 133:19743~19757.

    20. [20]

      [20] N Cox, D A Pantazis, F Neese et al. Acc. Chem. Res., 2013, 46:1588~1596.

    21. [21]

      [21] D A Pantazis, W Ames, N Cox et al. Angew. Chem. Int. Ed., 2012, 51:9935~9940.

    22. [22]

      [22] R Pal, C F Negre, L Vogt et al. Biochemistry, 2013, 52:7703~7706.

    23. [23]

      [23] N Cox, M Retegan, F Neese et al. Science, 2014, 345:804~808.

    24. [24]

      [24] P E Siegbahn. Phys. Chem. Chem. Phys., 2014, 16:11893~11900.

    25. [25]

      [25] K Saito, H Ishikita. Biochim. Biophys. Acta, 2014, 1837:159~166.

    26. [26]

      [26] M Retegan, N Cox, W Lubitz et al. Phys. Chem. Chem. Phys., 2014, 16:11901~11910.

    27. [27]

      [27] P E Siegbahn. Dalton. Transac., 2009, 45:10063~10068.

    28. [28]

      [28] I Rivalta, M Amin, S Luber et al. Biochemistry, 2011, 50:6312~6315.

    29. [29]

      [29] M P Navarro, W M Ames, H Nilsson et al. Proc. Natl. Acad. Sci., 2013, 110:15561~15566.

    30. [30]

      [30] P E Siegbahn. Biochim. Biophys. Acta, 2013, 1827:1003~1019.

    31. [31]

      [31] M R Blomberg, T Borowski, F Himo et al. Chem. Rev., 2014, 114:3601~3658.

    32. [32]

      [32] X Li, P E Siegbahn. Phys. Chem. Chem. Phys., 2015, 17:12168~12174.

    33. [33]

      [33] M Okamura, M Kondo, R Kuga et al. Nature, 2016, 530:465~468.

  • 加载中
    1. [1]

      Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060

    2. [2]

      Dongju Zhang Rongxiu Zhu . Construction of Ideological and Political Education in Quantum Chemistry Course: Several Teaching Cases to Reveal the Universal Connection of Things. University Chemistry, 2024, 39(7): 272-277. doi: 10.3866/PKU.DXHX202311032

    3. [3]

      Jiaxin SuJiaqi ZhangShuming ChaiYankun WangSibo WangYuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-0. doi: 10.3866/PKU.WHXB202408012

    4. [4]

      Guoxian Zhu Jing Chen Rongkai Pan . Enhancing the Teaching Quality of Atomic Structure: Insights and Strategies. University Chemistry, 2024, 39(3): 376-383. doi: 10.3866/PKU.DXHX202305027

    5. [5]

      Yanan Jiang Yuchen Ma . Brief Discussion on the Electronic Exchange Interaction in Quantum Chemistry Computations. University Chemistry, 2025, 40(3): 10-15. doi: 10.12461/PKU.DXHX202402058

    6. [6]

      Yaqin Zheng Lian Zhuo Meng Li Chunying Rong . Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 193-198. doi: 10.12461/PKU.DXHX202406119

    7. [7]

      Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378

    8. [8]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    9. [9]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    10. [10]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    11. [11]

      Hao WANGKun TANGJiangyang SHAOKezhi WANGYuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176

    12. [12]

      Xueli Mu Lingli Han Tao Liu . Quantum Chemical Calculation Study on the E2 Elimination Reaction of Halohydrocarbon: Designing a Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 68-75. doi: 10.12461/PKU.DXHX202404057

    13. [13]

      Wenkai Chen Yunjia Shen Xiangmeng Kong Yanli Zeng . Quantum Chemistry Calculation of Key Physical Quantity in Circularly Polarized Luminescence: Introducing an Exploratory Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 83-91. doi: 10.12461/PKU.DXHX202405018

    14. [14]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    15. [15]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    16. [16]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    17. [17]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    18. [18]

      Liu LinZemin SunHuatian ChenLian ZhaoMingyue SunYitao YangZhensheng LiaoXinyu WuXinxin LiCheng Tang . Recent Advances in Electrocatalytic Two-Electron Water Oxidation for Green H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(4): 2305019-0. doi: 10.3866/PKU.WHXB202305019

    19. [19]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    20. [20]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

Metrics
  • PDF Downloads(1)
  • Abstract views(532)
  • HTML views(39)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return