Citation:
Qiu Bing, Jing Yuanyuan, Yang Xinzheng. Progress in the Theoretical Study of Natural Photosynthetic Oxygen Evolution[J]. Chemistry,
;2016, 79(7): 579-583.
-
Photosynthetic oxygen-evolving complex(OEC) is the catalytic center for water oxidation embedded in Photosystem II. The study of OEC can not only improve the understanding of the photosynthesis process, but also provide a basis for developing stable, efficient and low-cost artificial catalysts for water oxidation. Because of the complexity of OEC, modern computational quantum chemistry plays an important role in studying its structure, properties and catalytic mechanism. This paper reviewed recent theoretical study progress in natural water oxidation catalyst, summarized the major tasks in the theoretical studies, and pointed out the directions for further theoretical research.
-
-
-
[1]
[1] R Eisenberg. Science, 2009, 324:44~45.
-
[2]
[2] N Cox, D A Pantazis, F Neese et al. Interface Focus,2015, 5:20150009.
-
[3]
[3] B Kok, B Forbush, M McGloin. Photochem. Photobiol., 1970, 11:457~475.
-
[4]
[4] J R Shen. Annu. Rev. Plant Biol., 2015, 66:23~48.
-
[5]
[5] J Yano, V Yachandra. Chem. Rev., 2014, 114:4175~4205.
-
[6]
[6] V Krewald, M Retegan, D A Pantazis. Top. Curr. Chem., 2016, 371:23~48.
-
[7]
[7] V Krewald, M Retegan, N Cox et al. Chem. Sci., 2015, 6:1676~1695.
-
[8]
[8] A Zouni, H T Witt, J Kern et al. Nature, 2001, 409:739~743.
-
[9]
[9] N Kamiya, J R Shen. PNAS, 2003, 100:98~103.
-
[10]
[10] K N Ferreira, T M Iverson, K Maghlaoui et al. Science, 2004, 303:1831~1838.
-
[11]
[11] B Loll, J Kern, W Saenger et al. Nature, 2005, 438:1040~1044.
-
[12]
[12] A Guskov, J Kern, A Gabdulkhakov et al. Nat. Struct. Mol. Biol., 2009, 16:334~342.
-
[13]
[13] Y Umena, K Kawakami, J R Shen et al. Nature,2011, 473:55~60.
-
[14]
[14] S Luber, I Rivalta, Y Umena et al. Biochemistry, 2011, 50:6308~6311.
-
[15]
[15] A Galstyan, A Robertazzi, E W Knapp. J. Am. Chem. Soc., 2012, 134:7442~7449.
-
[16]
[16] Y Kurashige, G K Chan, T Yanai. Nat. Chem., 2013, 5; 660~666.
-
[17]
[17] M Suga, F Akita, K Hirata et al. Nature, 2015, 517:99~103.
-
[18]
[18] M Askerka, D J Vinyard, J Wang et al. Biochemistry, 2015, 54:1713~1716.
-
[19]
[19] W Ames, D A Pantazis, V Krewald et al. J. Am. Chem. Soc., 2011, 133:19743~19757.
-
[20]
[20] N Cox, D A Pantazis, F Neese et al. Acc. Chem. Res., 2013, 46:1588~1596.
-
[21]
[21] D A Pantazis, W Ames, N Cox et al. Angew. Chem. Int. Ed., 2012, 51:9935~9940.
-
[22]
[22] R Pal, C F Negre, L Vogt et al. Biochemistry, 2013, 52:7703~7706.
-
[23]
[23] N Cox, M Retegan, F Neese et al. Science, 2014, 345:804~808.
-
[24]
[24] P E Siegbahn. Phys. Chem. Chem. Phys., 2014, 16:11893~11900.
-
[25]
[25] K Saito, H Ishikita. Biochim. Biophys. Acta, 2014, 1837:159~166.
-
[26]
[26] M Retegan, N Cox, W Lubitz et al. Phys. Chem. Chem. Phys., 2014, 16:11901~11910.
-
[27]
[27] P E Siegbahn. Dalton. Transac., 2009, 45:10063~10068.
-
[28]
[28] I Rivalta, M Amin, S Luber et al. Biochemistry, 2011, 50:6312~6315.
-
[29]
[29] M P Navarro, W M Ames, H Nilsson et al. Proc. Natl. Acad. Sci., 2013, 110:15561~15566.
-
[30]
[30] P E Siegbahn. Biochim. Biophys. Acta, 2013, 1827:1003~1019.
-
[31]
[31] M R Blomberg, T Borowski, F Himo et al. Chem. Rev., 2014, 114:3601~3658.
-
[32]
[32] X Li, P E Siegbahn. Phys. Chem. Chem. Phys., 2015, 17:12168~12174.
-
[33]
[33] M Okamura, M Kondo, R Kuga et al. Nature, 2016, 530:465~468.
-
[1]
-
-
-
[1]
Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060
-
[2]
Dongju Zhang , Rongxiu Zhu . Construction of Ideological and Political Education in Quantum Chemistry Course: Several Teaching Cases to Reveal the Universal Connection of Things. University Chemistry, 2024, 39(7): 272-277. doi: 10.3866/PKU.DXHX202311032
-
[3]
Jiaxin Su , Jiaqi Zhang , Shuming Chai , Yankun Wang , Sibo Wang , Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-0. doi: 10.3866/PKU.WHXB202408012
-
[4]
Guoxian Zhu , Jing Chen , Rongkai Pan . Enhancing the Teaching Quality of Atomic Structure: Insights and Strategies. University Chemistry, 2024, 39(3): 376-383. doi: 10.3866/PKU.DXHX202305027
-
[5]
Yanan Jiang , Yuchen Ma . Brief Discussion on the Electronic Exchange Interaction in Quantum Chemistry Computations. University Chemistry, 2025, 40(3): 10-15. doi: 10.12461/PKU.DXHX202402058
-
[6]
Yaqin Zheng , Lian Zhuo , Meng Li , Chunying Rong . Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 193-198. doi: 10.12461/PKU.DXHX202406119
-
[7]
Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378
-
[8]
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
-
[9]
Jiabo Huang , Quanxin Li , Zhongyan Cao , Li Dang , Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172
-
[10]
Huiying Xu , Minghui Liang , Zhi Zhou , Hui Gao , Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011
-
[11]
Hao WANG , Kun TANG , Jiangyang SHAO , Kezhi WANG , Yuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176
-
[12]
Xueli Mu , Lingli Han , Tao Liu . Quantum Chemical Calculation Study on the E2 Elimination Reaction of Halohydrocarbon: Designing a Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 68-75. doi: 10.12461/PKU.DXHX202404057
-
[13]
Wenkai Chen , Yunjia Shen , Xiangmeng Kong , Yanli Zeng . Quantum Chemistry Calculation of Key Physical Quantity in Circularly Polarized Luminescence: Introducing an Exploratory Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 83-91. doi: 10.12461/PKU.DXHX202405018
-
[14]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[15]
Wentao Xu , Xuyan Mo , Yang Zhou , Zuxian Weng , Kunling Mo , Yanhua Wu , Xinlin Jiang , Dan Li , Tangqi Lan , Huan Wen , Fuqin Zheng , Youjun Fan , Wei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003
-
[16]
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005
-
[17]
Ke Qiu , Fengmei Wang , Mochou Liao , Kerun Zhu , Jiawei Chen , Wei Zhang , Yongyao Xia , Xiaoli Dong , Fei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036
-
[18]
Liu Lin , Zemin Sun , Huatian Chen , Lian Zhao , Mingyue Sun , Yitao Yang , Zhensheng Liao , Xinyu Wu , Xinxin Li , Cheng Tang . Recent Advances in Electrocatalytic Two-Electron Water Oxidation for Green H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(4): 2305019-0. doi: 10.3866/PKU.WHXB202305019
-
[19]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[20]
Ji-Quan Liu , Huilin Guo , Ying Yang , Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031
-
[1]
Metrics
- PDF Downloads(1)
- Abstract views(532)
- HTML views(39)