Citation: Yao Xue, Zhang Yahui, Lv Jubo, Xu Hui, Wang Lei. Syntheses and Antibacterial Properties of Ag/Polymer Composites[J]. Chemistry, ;2016, 79(6): 496-502. shu

Syntheses and Antibacterial Properties of Ag/Polymer Composites

  • Corresponding author: Lv Jubo, 
  • Received Date: 29 November 2015
    Available Online: 18 January 2016

    Fund Project:

  • Ag nanoparticles (Ag NPs)/polymer composite materials have made rapid progress in recent years. They also have attracted tremendous attention due to their outstanding physical and chemical properties, especially in the aspect of high antibacterial activity. In this paper, the progress in synthetic methods and antibacterial effect of Ag NPs/polymer composites in recent years was reviewed, and the prospects of development and application of them were also discussed.
  • 加载中
    1. [1]

      [1] R Muñoz-Espí P Dolcet, T Rossow et al. ACS Appl. Mater. Interf., 2011, 3(11):4292~4298.

    2. [2]

      [2] J Pola,A Ouchi,S Bakardjieva et al. J. Photochem. Photobio. A, 2007, 192(2):84~92.

    3. [3]

      [3] L Clément,B C Reinsch,M F Marc et al. Environ. Sci. Technol., 2011, 45(12):5260~5266.

    4. [4]

      [4] G K Hinkley,P Carpinone,J W Munson et al. Part. Fibre. Toxicol., 2015, 12(1):1~13.

    5. [5]

      [5] M Rai,A Yadav,A Gade. Biotechnol. Adv., 2009, 27(1):76~83.

    6. [6]

      [6] Y Liu,X Liu,X Wang et al. J. Appl. Polym.Sci., 2010, 116(5):2617~2625.

    7. [7]

      [7] G A Sotiriou,S E Pratsinis. Environ. Sci. Technol., 2010, 44(14):5649~5654.

    8. [8]

      [8] M A D Nobile,M Cannarsi,C Altieri et al. J Food Sci., 2004, 69(8):379~383.

    9. [9]

      [9] M Agarwala,T Barman,D Gogoi et al. J. Biomed. Mater. Res. B, 2014, 102(6):1223~1235.

    10. [10]

      [10] A Drury,S Chaure,M Kro et al. Chem. Mater., 2007, 19(17):4252~4258.

    11. [11]

      [11] H Kong,J Jang. Biomacromolecules, 2008, 9(10):2677~2681.

    12. [12]

      [12] P Bober,J Liu,K S Mikkonen et al. Biomacromolecules, 2014, 15(10):3655~3663.

    13. [13]

      [13] K F Babu,P Dhandapani,S Maruthamuthu et al. Carbohydr. Polym., 2012, 90(4):1557~1563.

    14. [14]

      [14] J D Schiffman,W Yue,E P Giannelis et al. Langmuir, 2011, 27(21):13159~13164.

    15. [15]

      [15] H Zhou,Y Liu,W Chi et al. Appl. Surf. Sci., 2013, 282(10):181~185.

    16. [16]

      [16] T S Sileika,H D Kim,P Maniak et al. ACS Appl. Mater. Interf., 2011, 3(12):4602~4610.

    17. [17]

      [17] C Wu,G Zhang,T Xia et al. Mater. Sci. Eng. C, 2015, 55:155~165.

    18. [18]

      [18] Z Lu,J Xiao,Y Wang et al. J. Colloid. Interf. Sci., 2015, 452:8~14.

    19. [19]

      [19] Z Zhang,J Zhang,B Zhang et al. Nanoscale, 2013, 5(1):118~123.

    20. [20]

      [20] Y Dong,T Liu,S Sun et al. Ceram. Int., 2014, 40(4):5605~5609.

    21. [21]

      [21] E Hontanon,J Feng,M Blanes et al. Proc. Int. Conf. Nanomater. Appl. Prop., 2014, 3(1):1~5.

    22. [22]

      [22] M Pollini,F Paladini,A Licciulli et al. J. Appl. Polym. Sci., 2012, 125(3):36444.

    23. [23]

      [23] A Hebeish,A El-Shafei,S Sharaf et al. Carbohydr. Polym., 2014, 113c:455~462.

    24. [24]

      [24] S X Jiang,W F Qin,R H Guo et al. Surf. Coat. Tech., 2010, 204(21):3662~3667.

    25. [25]

      [25] C Moseke,U Gbureck,P Elter et al. J. Mater. Sci. -Mater Med., 2011, 22(12):2711~2720.

    26. [26]

      [26] P Favia,M Vulpio,R Marino et al. Plasmas Polym., 2000, 5(1):1~14.

    27. [27]

      [27] W Tobias,D Evangelia,D J Lang et al. Environ. Sci. Tech., 2011, 45(10):4570~4578

    28. [28]

      [28] H Kong,J Song,J Jang. Macromol. Rapid Commun., 2009, 30(15):1350~1355.

    29. [29]

      [29] J Song,H Kang,C Lee et al. ACS Appl. Mater. Interf., 2012, 4(1):460~465.

    30. [30]

      [30] T A Dankovich,D G Gray. Environ. Sci. Tech., 2011, 45(5):1992~1998.

    31. [31]

      [31] X Xu,W Zhong,S Zhou et al. J. Appl. Polym. Sci., 2010, 118(1):588~595.

    32. [32]

      [32] T Liu,B Yin,T He et al. ACS Appl. Mater. Interf., 2012, 4(9):4683~4690.

    33. [33]

      [33] S Petronis,K Berntsson,J Gold et al. J. Biomater. Sci. Polym. Ed., 2000, 11(10):1051~1072.

    34. [34]

      [34] B Yin,T Liu,Y S Yin. Langmuir, 2012, 28(49):17019~17025.

    35. [35]

      [35] M Ocwieja,Z Adamczyk. Langmuir, 2013, 29(11):3546~3555.

    36. [36]

      [36] M H El-Rafie,H B Ahmed,M K Zahran. Carbohydr. Polym., 2014, 107(7):174~181.

    37. [37]

      [37] P K Khanna,N Singh,S Charan et al. Mater. Chem. Phys., 2005, 92(1):214~219.

    38. [38]

      [38] F Paladini,S Simone,A Sannino et al. J. Appl. Polym. Sci., 2014, 131(11):2928~2935.

    39. [39]

      [39] C Damm,H Münstedt. Appl. Phys. A, 2008, 91(3):479~486.

    40. [40]

      [40] A Bacciarelli-Ulacha,E Rybicki,E Matyjas-Zgondek et al. Ind. Eng. Chem. Res., 2014, 53(11):4147~4155.

    41. [41]

      [41] B L Rivas,M Antonio,G Catherine et al. J. Appl. Polym. Sci., 2009, 111(1):78~86.

    42. [42]

      [42] S K Jewrajka,S Haldar. Polym. Compos., 2011, 32(11):1851~1861.

    43. [43]

      [43] Y N Zhou,C Hua,Z H Luo. AIChE J., 2013, 59(12):4780~4793.

    44. [44]

      [44] F Paladini,M Pollini,A Sannino et al. Biomac, 2015, 16(7):1873~1885.

    45. [45]

      [45] S Varghese,S Elfakhri,D W Sheel et al. J. Appl. Microbiol., 2013, 115(5):1107~1116.

    46. [46]

      [46] S Serghini-Monim,L L Coatsworth,P R Norton et al. Rev. Sci. Instrum., 1996, 67(10):3672~3674.

    47. [47]

      [47] Y H Lee,X Q Zhang,W Zhang et al. Adv. Mater., 2012, 24(17):2320~2325.

    48. [48]

      [48] X J Xu,G T Fei,W H Yu et al. Nanotechnol., 2006, 17(2):426~429.

    49. [49]

      [49] W Tao,D C Sun. Mater. Res. Bull., 2008, 43(7):1754~1760.

    50. [50]

      [50] J D Du,X K Liu,D H He et al. Heat Treat. Met., 2014, 39(3):27~31.

    51. [51]

      [51] J Ji,J Fu,J Shen. Adv. Mater., 2006, 18(11):1441~1444.

    52. [52]

      [52] H Shifeng,H C Chad,T Lacramioara et al. J. Am. Chem. Soc., 2004, 126(18):5674~5675.

    53. [53]

      [53] B S Kong,J Geng,H T Jung. Chem Commun., 2009, 16(16):2174~2176.

    54. [54]

      [54] V R Shinde,T P Gujar,C D Lokhande. Sens. Actuators B, 2007, 120(2):551~559.

    55. [55]

      [55] R Mueller,L Mädler,S E Pratsinis. Chem. Eng. Sci., 2003, 58(58):1969~1976.

    56. [56]

      [56] J S Cho,S H Rhee. J. Biomed. Mater. Res. B, 2011, 100b(2):493~500.

    57. [57]

      [57] S Clermont,R François. New J. Chem., 1994, 18(10):1007~1047.

    58. [58]

      [58] B Wang, B Li, Q Deng et al. Anal. Chem., 1998, 70(15):3170~3174.

    59. [59]

      [59] K Thongsuriwong, P Amornpitoksuk, S Suwanboon. Adv. Powder Technol., 2015,24(1):275~280.

    60. [60]

      [60] W Xun,Z Jing,P Qing et al. Inorg. Chem., 2006, 45(17):6661~6665.

    61. [61]

      [61] K H Tam,C K Cheung,Y H Leung et al. J. Phys. Chem. B, 2006, 110(42):20865~20871.

    62. [62]

      [62] E Ohshima,H Ogino,I Niikura et al. J. Cryst. Growth, 2004, 260(1):166~170.

    63. [63]

      [63] T Marczylo,P Lam,V Nallendran et al. Anal. Biochem., 2009, 384(1):106~113.

    64. [64]

      [64] S Manku,C Laplante,D Kopac et al. J. Org. Chem., 2001, 66(3):874~885.

    65. [65]

      [65] T Alexander,C D Tran. Anal. Chem., 2001, 73(5):1062~1067.

  • 加载中
    1. [1]

      Xiangyu CHENZhenzhen MIAOLigang XUGuangbao WUZhuang LIUWenzhen LÜRunfeng CHEN . Research progress on low-dimensional organic-inorganic hybrid metal halide optoelectronic materials. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2201-2217. doi: 10.11862/CJIC.20250056

    2. [2]

      Rongzhan LOUQiaoling KANGZhenchao BAIDongyun LIYang XURui WANGQingyi LU . Research progress of sodium ion high entropy layered oxide cathode. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2411-2428. doi: 10.11862/CJIC.20250142

    3. [3]

      Lin′an CAODengyue MAGang XU . Research advances in electrically conductive metal-organic frameworks-based electrochemical sensors. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1953-1972. doi: 10.11862/CJIC.20250160

    4. [4]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    5. [5]

      Jia JITengqi YAOWenqian DENGWenjing SHIXuan LÜLin TIANXiaoyan XINYinling HOU . Structures, antibacterial activities, and interactions with DNA of two nickel complexes. Chinese Journal of Inorganic Chemistry, 2026, 42(1): 78-86. doi: 10.11862/CJIC.20250141

    6. [6]

      Kaimin WANGNa HEShiyi LIXuling BAIWeiqing SUNYanqing YEYulu MA . Synthesis, Hirshfeld surface analysis and properties of two Zn(Ⅱ)/Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2026, 42(1): 55-64. doi: 10.11862/CJIC.20250178

    7. [7]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    8. [8]

      Minghui WuMarkus MühlinghausXuechao LiChaojie XuQiang ChenHaiming ZhangKlaus MüllenLifeng Chi . On-Surface Synthesis of Chevron-Shaped Conjugated Ladder Polymers Consisting of Benzo[a]azulene Units. Acta Physico-Chimica Sinica, 2024, 40(8): 2307024-0. doi: 10.3866/PKU.WHXB202307024

    9. [9]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    10. [10]

      Yao XieShuangjun LiChao ChenSiyu FanYing TaoQitao Zhang . Ionic polarization engineering of polymeric carbon nitride toward efficient H2O2 photosynthesis. Acta Physico-Chimica Sinica, 2026, 42(5): 100183-0. doi: 10.1016/j.actphy.2025.100183

    11. [11]

      Lijuan Wang Yuping Ning Jian Li Sha Luo Xiongfei Luo Ruiwen Wang . Enhancing the Advanced Nature of Natural Product Chemistry Laboratory Courses with New Research Findings: A Case Study of the Application of Berberine Hydrochloride in Photodynamic Antimicrobial Films. University Chemistry, 2024, 39(11): 241-250. doi: 10.12461/PKU.DXHX202403017

    12. [12]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    13. [13]

      Xue XiaoJiachun LiXiangtong MengJieshan Qiu . Sulfur-Doped Carbon-Coated Fe0.95S1.05 Nanospheres as Anodes for High-Performance Sodium Storage. Acta Physico-Chimica Sinica, 2024, 40(6): 2307006-0. doi: 10.3866/PKU.WHXB202307006

    14. [14]

      Heng Zhang Ying Ma Shiling Yuan . Machine Learning-based Prediction of Antifouling Performance in Polymer Materials: An Integrated Molecular Simulation Experiment. University Chemistry, 2026, 41(1): 346-353. doi: 10.12461/PKU.DXHX202506015

    15. [15]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    16. [16]

      Yuxia Luo Xiaoyu Xie Fangfang Chen . 药物递送魔法师——分子印迹聚合物. University Chemistry, 2025, 40(8): 202-210. doi: 10.12461/PKU.DXHX202409129

    17. [17]

      Fanpeng MengFei ZhaoJingkai LinJinsheng ZhaoHuayang ZhangShaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095

    18. [18]

      Hanmei LüXin ChenQifu SunNing ZhaoXiangxin Guo . Uniform Garnet Nanoparticle Dispersion in Composite Polymer Electrolytes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305016-0. doi: 10.3866/PKU.WHXB202305016

    19. [19]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    20. [20]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

Metrics
  • PDF Downloads(2)
  • Abstract views(575)
  • HTML views(72)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return