Citation: Ju Jiangyue, Wang Yaming, Jiang Lihong, Wang Hongqin. Research Progress in Nickel-Based Amorphous Alloy Catalysts[J]. Chemistry, ;2016, 79(2): 123-128. shu

Research Progress in Nickel-Based Amorphous Alloy Catalysts

  • Corresponding author: Jiang Lihong, 
  • Received Date: 12 July 2015
    Available Online: 27 August 2015

    Fund Project:

  • As a type of environmentally friendly catalyst, nickel-based amorphous alloy catalysts exhibit good catalytic performance and possess some characters such as high activity, high selectivity, low prices etc. It is widely used in the fields of the catalytic hydrogenation of unsaturated compounds, compound desulfurization, hydrolysis of borohydride, fuel cells electro-catalytic oxidation and so on. The structural characteristics of nickel-based amorphous alloy catalysts and the research status at home and abroad in recent years are summarized. Meanwhile, the effects of addition of metal, supports and preparation methods on the performance of the nickel-based amorphous alloy catalysts are emphasized, and its future research directions are analyzed and prospected.
  • 加载中
    1. [1]

      [1] E M Ryymin, M L Honkela, T R Viljavaet et al. Appl. Catal. A:Gen., 2009, 358(1):42~48.

    2. [2]

      [2] M Yamasaki, H Habazaki, T Yoshida et al. Appl. Catal. A:Gen., 1997, 163(1~2):187~197.

    3. [3]

      [3] L Mihailov, T Spassov, M Bojinov. Int. J. Hydrogen Energy, 2012, 37(14):10499~10506.

    4. [4]

      [4] 宗保宁, 闵恩泽, 邓景发. 分子催化, 1990, 4(8):248~251.

    5. [5]

      [5] J F Deng, H X Li, W J Wang. Catal. Today, 1999, 51(1):113~125.

    6. [6]

      [6] Y G He, M H Qiao, H R Hu et al. Mater. Lett., 2002, 56(6):952~957.

    7. [7]

      [7] J B Zhu, S Wang, M H Qiao et al. J. Non-Crystalline Solids, 2007, 353(27):2638~2645.

    8. [8]

      [8] H X Li, H S Luo, L Zhuang et al. J. Mol. Catal. A:Chem., 2003, 203(1~2):267~275.

    9. [9]

      [9] H X Li, Y D Wu, J Zhang et al. Appl. Catal. A:Gen., 2004, 275(1~2):199~206.

    10. [10]

      [10] A Y Bunch, X Wang, U S Ozkan. Catal. A:Gen., 2008, 346(1~2):96~103.

    11. [11]

      [11] H Song, X C Wu, H Y Wang et al. Chem. Eng., 2011, 19(4):698~702.

    12. [12]

      [12] S McArdle, J J Leahy, T Curtin et al. Appl. Catal. A:Gen., 2014, 474:78~86.

    13. [13]

      [13] 李辉, 徐烨, 李和兴等. 非晶态合金及其催化应用. 北京:科学出版社, 2014.

    14. [14]

      [14] A A Mirzaei, S Vahid, H O Torshiz. J. Nat. Gas Sci. Eng., 2013, 15:106~117.

    15. [15]

      [15] A Boudjahem, W Bouderbala, M Bettahar et al. Fuel Proc. Tech., 2011, 92(3):500~506.

    16. [16]

      [16] S A Regenhardt, C I Meyer, T F Garetto et al. Appl. Catal. A:Gen., 2012, 449:81~87.

    17. [17]

      [17] O Şahin, C Saka, O Baytar et al. J. Power Sources, 2013, 240:729~735.

    18. [18]

      [18] P Sivasakthi, S Premlatha, G N K R Bapu. Electrochim. Acta, 2014, 141:134~140.

    19. [19]

      [19] J Balamurugan, S M S Kumar, R Thangamuthu et al. J. Mol. Catal. A:Chem., 2013, 372:13~22.

    20. [20]

      [20] K L Wang, B LYang, Y Liu et al. Energy Fuels, 2009, 23(9):4209~4214.

    21. [21]

      [21] L Kaluza, R Palcheva, A Spojakina et al.Proc. Eng., 2012, 42:873~884.

    22. [22]

      [22] J Fang, X Y Chen, B Liu et al. J. Catal., 2005, 229(1):97~104.

    23. [23]

      [23] 孙昱, 李斌栋, 吴秋洁等. 工业催化, 2006, 14(3):59~62.

    24. [24]

      [24] A Rismanchian, J Mirzababaei, S S C Chuang. Catal. Today, 2015, 245:79~85.

    25. [25]

      [25] J L Ye, Z X Li, H C Duan et al. J. Rare Earths, 2006, 24(3):302~308.

    26. [26]

      [26] H M AbdelDayem, M Faiz, H S Abdel-Samad et al. J. Rare Earths, 2015, 33(6):611~618.

    27. [27]

      [27] Y Yu, M H Cui, M L Li et al. J. Rare Earths, 2014, 32(8):709~714.

    28. [28]

      [28] J Newnham, K Mantri, M H Amin et al. Int. J. Hydrogen Energy, 2012, 37(2):1454~1464.

    29. [29]

      [29] J Qin, B S Li, W Zhang et al. Micropor. Mesopor. Mater., 2015, 208:181~187.

    30. [30]

      [30] T A Zepeda, A Infantes-Molina, J N León et al. Appl. Catal. A:Gen., 2014, 484:108~121.

    31. [31]

      [31] S L Yao, C H Yang, Y S Tan et al. Catal. Commun., 2008, 9(11~12):2107~2111.

    32. [32]

      [32] N Rahimi, M M Doroodmand, S Sabbaghi et al. Mater. Sci. Eng:C., 2013, 33(6):3173~3179.

    33. [33]

      [33] T Choia, S H Kima, C W Lee et al. Biosen. Bioelectro., 2015, 63:325~330.

    34. [34]

      [34] D Q Zhang, A J Duan, Z Zhao et al. Catal. Today, 2011, 175(1):477~484.

    35. [35]

      [35] J H Yang, J Tan, D Ma. J. Power Sources, 2014, 260:169~173.

    36. [36]

      [36] 曾平莉. 浙江工业大学硕士学位论文, 2009.

    37. [37]

      [37] X Hu, D H Dong, L J Zhang et al. Catal. Commun., 2014, 55:74~77.

    38. [38]

      [38] K Shimura, T Miyazawa, T Hanaoka et al. J. Mol. Catal. A:Chem., 2015, 407:15~24.

    39. [39]

      [39] H Song, X C Wu, H Y Wang et al. Chem. Eng., 2011, 19(4):698~702.

    40. [40]

      [40] 谌伟庆, 黄勇, 石秋杰. 分子催化, 2012, 26(2):149~153.

    41. [41]

      [41] J G Ahn, D J Kim, J R Lee et al. Surf. Coat. Technol., 2006, 201(6):3793~3796.

    42. [42]

      [42] R R Bhosale, S R Pujari, M K Lande et al. Appl. Surf. Sci., 2012, 261:835~841.

    43. [43]

      [43] G Stremsdoerfer, H Omidvar, P Roux et al. J. All. Compd., 2008, 466(1~2):391~397.

    44. [44]

      [44] D C Li, L J Wang, P Zhang et al. Catal. Commun., 2013, 37:32~35.

    45. [45]

      [45] R Sahraei, S Darafarin. J. Lumin., 2014, 149:170~175.

    46. [46]

      [46] E Correa, A A Zuleta, L Guerra et al. Surf. Coat. Tech., 2013, 232:784~794.

    47. [47]

      [47] O G Morales-Saavedra, M E S Vergara, A O Rebollo et al. J. Phy. Chem. Solids, 2007, 68(8):1571~1582.

    48. [48]

      [48] M C Altay, S Eroglu. Mater. Lett., 2012, 67(1):124~127.

  • 加载中
    1. [1]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    2. [2]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004

    3. [3]

      Yuting BaiCenqi YanZhen LiJiaqiang QinPei Cheng . Preparation of High-Strength Polyimide Porous Films with Thermally Closed Pore Property by In Situ Pore Formation Method. Acta Physico-Chimica Sinica, 2024, 40(9): 2306010-0. doi: 10.3866/PKU.WHXB202306010

    4. [4]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    5. [5]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    6. [6]

      Yongqing XuYuyao YangMengna WuXiaoxiao YangXuan BieShiyu ZhangQinghai LiYanguo ZhangChenwei ZhangRobert E. PrzekopBogna SztorchDariusz BrzakalskiHui Zhou . Review on Using Molybdenum Carbides for the Thermal Catalysis of CO2 Hydrogenation to Produce High-Value-Added Chemicals and Fuels. Acta Physico-Chimica Sinica, 2024, 40(4): 2304003-0. doi: 10.3866/PKU.WHXB202304003

    7. [7]

      Rui HUANGShengjie LIUQingyuan WUNanfeng ZHENG . Enhanced selectivity of catalytic hydrogenation of halogenated nitroaromatics by interfacial effects. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 201-212. doi: 10.11862/CJIC.20240356

    8. [8]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    9. [9]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    10. [10]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    11. [11]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    12. [12]

      Huiwei DingBo PengZhihao WangQiaofeng Han . Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2305048-0. doi: 10.3866/PKU.WHXB202305048

    13. [13]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    14. [14]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    15. [15]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

    16. [16]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    17. [17]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    18. [18]

      Lutian ZhaoYangge GuoLiuxuan LuoXiaohui YanShuiyun ShenJunliang Zhang . Electrochemical Synthesis for Metallic Nanocrystal Electrocatalysts: Principle, Application and Challenge. Acta Physico-Chimica Sinica, 2024, 40(7): 2306029-0. doi: 10.3866/PKU.WHXB202306029

    19. [19]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

    20. [20]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

Metrics
  • PDF Downloads(14)
  • Abstract views(605)
  • HTML views(160)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return