Citation: Zhang Qiang, Liu Yan. Influence of Ozonation on Chlorinated Disinfection By-Products Formation Potential in Drinking Water[J]. Chemistry, ;2016, 79(1): 88-91. shu

Influence of Ozonation on Chlorinated Disinfection By-Products Formation Potential in Drinking Water

  • Received Date: 20 April 2015
    Available Online: 17 June 2015

    Fund Project:

  • The effect of ozonation on chlorination disinfection by-products (DBPs) formation potential in drinking water was studied. The results showed that ozonation has different effects on different chlorinated DBPs formation potential. Extracellular polymeric substances (EPS) and soluble microbial products (SMP) from biological treatment units are efficient precursors of chlorinated DBPs, and they are more efficient precursors of trihalomethans (THMs) than haloacetic acids (HAAs). The major precursors of THMs in water samples are the high molecular weight organics which can be removed by ozonation efficiently. The low molecular weight organics that produced by ozonation may be efficient precursors of monochloroacetic acid (MCAA) and monobromoacetic acid (MBAA). Trichloroacetic acid (TCAA) formation potential can be removed by ozonation efficiently, especially in high initial concentration of TCAA precursors.
  • 加载中
    1. [1]

      [1] R Treguer, T R atin, A Couvert et al. Water Res., 2010, 44(3):781~788.

    2. [2]

      [2] 张强, 刘燕, 魏源源等. 化学通报, 2010, 73(11):980~985.

    3. [3]

      [3] 刘超, 强志民, 张涛等. 环境化学, 2011, 7:1225~1235.

    4. [4]

      [4] 刘晓飞, 马军.中国给水排水, 2006, 22(9):1~4, 9.

    5. [5]

      [5] W Chu, N Gao, D Yin et al. Chemosphere, 2012, 86(11):1087~1091.

    6. [6]

      [6] APHA/AWWA/WEF. Standard methods for the examination of water and wastewater. Washington, D C:American Public Health Association/American Water Works Association/Water Environment Federation, 1998.

    7. [7]

      [7] USEPA. Determination of haloacetic acids and dalapon in drinking water by liquid-liquid microextraction derivatization, and gas chromatography with electron capture detection. Washington, D C:Technical Support Center Office of Ground Water and Drinking water, 2003, EPA 815-B-03-002.

    8. [8]

      [8] Q Zhang, Y Liu, Y Y Wei et al. Desalin. Water Treatment, 2012, 48(1~3):221~231.

    9. [9]

      [9] Q Zhang, B Liu, Y Liu. Environ. Technol., 2014, 35(14):1753~1759.

    10. [10]

      [10] Y W Ko, G H Abbt-Braun, F H Frimmel. Acta Hydroch. Hydrob., 2000, 5:256~261.

    11. [11]

      [11] R Lamsal, M E Walsh, G A Gagnon. Water Res., 2011, 45(10):3263~3269.

    12. [12]

      [12] 张锁娜, 王海波, 李肖肖等.环境工程学报, 2014, 8(10):4091~4096.

    13. [13]

      [13] 韩帮军, 马军, 陈忠林等.中国给水排水, 2006, 22(17):18~21, 25.

    14. [14]

      [14] 张可欣. 中国给水排水, 2006, 22(15):44~46.

  • 加载中
    1. [1]

      Zhongbin Pan Shijie Huang Yunjie Luo Hongzhen Xie . Design of a Comprehensive Experiment for Determining Permanganate Index (CODMn) in Drinking Water. University Chemistry, 2024, 39(7): 354-360. doi: 10.12461/PKU.DXHX202311040

    2. [2]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    3. [3]

      Weigang Zhu Yun Tian Zhicheng Zhang Hongling Gao . Reform Exploration of Student Performance Assessment in Inorganic Chemistry Experimental Courses. University Chemistry, 2024, 39(10): 203-209. doi: 10.12461/PKU.DXHX202404114

    4. [4]

      Jia Huo Jia Li Yongjun Li Yuzhi Wang . Ideological and Political Design of Physical Chemistry Teaching: Chemical Potential of Any Component in an Ideal-Dilute Solution. University Chemistry, 2024, 39(2): 14-20. doi: 10.3866/PKU.DXHX202307075

    5. [5]

      Yadan LuoHao ZhengXin LiFengmin LiHua TangXilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052

    6. [6]

      Tong ZhouXue LiuLiang ZhaoMingtao QiaoWanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020

    7. [7]

      Yu WangHaiyang ShiZihan ChenFeng ChenPing WangXuefei Wang . 具有富电子Ptδ壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081

    8. [8]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012

    9. [9]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    10. [10]

      Xudong LvTao ShaoJunyan LiuMeng YeShengwei Liu . Paired Electrochemical CO2 Reduction and HCHO Oxidation for the Cost-Effective Production of Value-Added Chemicals. Acta Physico-Chimica Sinica, 2024, 40(5): 2305028-0. doi: 10.3866/PKU.WHXB202305028

    11. [11]

      Lijuan Wang Yuping Ning Jian Li Sha Luo Xiongfei Luo Ruiwen Wang . Enhancing the Advanced Nature of Natural Product Chemistry Laboratory Courses with New Research Findings: A Case Study of the Application of Berberine Hydrochloride in Photodynamic Antimicrobial Films. University Chemistry, 2024, 39(11): 241-250. doi: 10.12461/PKU.DXHX202403017

    12. [12]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    13. [13]

      Dong XiangKunzhen LiKanghua MiaoRan LongYujie XiongXiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027

Metrics
  • PDF Downloads(0)
  • Abstract views(414)
  • HTML views(51)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return