Citation: Wang Jun, Huo Hongliang, Ma Lili, Li Cuiqin, Shi Weiguang. Progress in Catalytic Systems of Decene Synthesis from Ethylene Oligomerization[J]. Chemistry, ;2016, 79(1): 31-36,30. shu

Progress in Catalytic Systems of Decene Synthesis from Ethylene Oligomerization

  • Corresponding author: Shi Weiguang, 
  • Received Date: 15 June 2015
    Available Online: 10 August 2015

    Fund Project:

  • As one of the basic materials in organic synthesis, decene plays an indispensable role in modern chemical production. The demand of decene is increasing year by year, while there is no one process route to produce decene from ethylene oligomerization directly at present. As a long-chain alkene, decene can be prepared by ethylene oligomerization. In this paper, we focused on the reaction of decene synthesis from ethylene oligomerization. We mainly expressed the research status and the achievements in Cr catalytic system which included the effect of the structure of catalysts on the selectivity of decene and the mechanism of polymerization. At the same time, we expounded the research status in Ni catalytic system which included the relationship between the structure of catalysts and the selectivity of decene, and the relationship between the structure of dendritic molecule and the selectivity of decene. Moreover, the progresses of Fe, Ti, Zr catalytic systems in the catalytic synthesis of decene from ethylene oligomerization were also described by some, hoping to provide theory bases for the development of new catalysts for producing decene.
  • 加载中
    1. [1]

      [1] D J Yang, H J Kim, D H Kim. Catalysts, 2013, 3:176~188.

    2. [2]

      [2] H Ding, B Y Zhang, J Liu. Petrol. Sci. Technol., 2009, 27(17):1919~1925.

    3. [3]

      [3] A Hafizi, A Ahmadpour, M M Heravi et al. Chin. J. Catal., 2012, 33:494~501.

    4. [4]

      [4] 谭铁鸣. 华东理工大学工程硕士学位论文, 2011.

    5. [5]

      [5] O L Sydora, R D Knudsen, E J Baralt. USP:150642-A1,2013.

    6. [6]

      [6] K Son, R M Waymouth. Organometallics, 2010, 29(16):3515~3520.

    7. [7]

      [7] A Martínez, M A Arribas, P Concepción et al. Appl. Catal. A:Gen., 2013, 467:509~518.

    8. [8]

      [8] 王俊, 李云, 李翠勤等. 化工进展, 2012, 31(1):91~97.

    9. [9]

      [9] 王媚, 时鹏飞, 陈延辉等. 化工学报, 2014, 65(9):3485~3489.

    10. [10]

      [10] R Gao, T L Liang, F S Wang et al. J. Organomet. Chem., 2009, 694:3701~3707.

    11. [11]

      [11] M Zhang, K F Wang, W H Sun. Dalton Transac., 2009:6354~6363.

    12. [12]

      [12] Y Yang, J Gurnham, B P Liu et al. Organometallics, 2014, 33:5749~5757.

    13. [13]

      [13] 王雅珍, 王力博, 陈洁等. 化工进展, 2011, 30(3):520~523.

    14. [14]

      [14] Y Yang, H Kim, J Lee et al. Appl. Catal. A:Gen., 2000, 193:29~38.

    15. [15]

      [15] T M Zilbershtein, A A Nosikov, A I Kochnev et al. Petrol. Chem., 2012, 52(4):253~260.

    16. [16]

      [16] S F Liu, R Peloso, R Pattacini et al. Dalton Transac., 2010, 39:7881~7883.

    17. [17]

      [17] S F Liu, R Pattacini, P Braunstein. Organometallics, 2011, 30:3549~3558.

    18. [18]

      [18] F Junges, M C A Kuhn, A H D P Santos et al. Organometallics, 2007, 26(16):4010~4014.

    19. [19]

      [19] Z B Guan, C S Popeney. Top. Organomet. Chem., 2009, 26:179~220.

    20. [20]

      [20] P R Elowe, C McCann, P G Pringle et al. Organometallics, 2006, 25:5255~5260.

    21. [21]

      [21] Y J Chen, W W Zuo, P Hao et al. J. Organomet. Chem., 2008, 693:750~762.

    22. [22]

      [22] L W Xiao, M Zhang, W H Sun. Polyhedron, 2010, 29:142~147.

    23. [23]

      [23] L H Do, J A Labinger, J E Bercaw. Organometallics, 2012, 31:5143~5149.

    24. [24]

      [24] L H Do, J A Labinger, J E Bercaw. Catalysis, 2013, 3:2582~2585.

    25. [25]

      [25] T M Zilbershtein, V A Kardash, V V Suvorova et al. Appl. Catal. A:Gen., 2014, 475:371~378.

    26. [26]

      [26] Y Suzuki, S Kinoshita, A Shibahara et al. Organometallics, 2010, 29(11):2394~2396.

    27. [27]

      [27] S L Wang, W H Sun, C Redshaw. J. Organometallic Chem., 2014, 751:717~741.

    28. [28]

      [28] D M Singleton. USP:4,503,280-A,1985.

    29. [29]

      [29] 杨磊杰, 王文珍, 吴洋. 化学通报, 2014, 77(10):951~960.

    30. [30]

      [30] F S Liu, H Y Gao, K M Song et al. Polyhedron, 2009, 28:1386~1392.

    31. [31]

      [31] Y Y Wang, S A Lin, F M Zhu et al. Inorg. Chim. Acta, 2009, 362:166~172.

    32. [32]

      [32] T Ahamad, S M Alshehri, S F Mapolie. Catal. Lett., 2010, 138:171~179.

    33. [33]

      [33] H B Hu, L Zhang, H Y Gao et al. Chem. Eur. J., 2014, 20:3225~3233.

    34. [34]

      [34] J Wang, P Zhang, S Chen et al. J. Macromol. Sci., Part A:Pure Appl. Chem., 2013, 50:163~167.

    35. [35]

      [35] 王俊, 王海琛, 李翠勤等. 石油学报(石油加工), 2013, 29(5):920~928.

    36. [36]

      [36] B L Small, R Rios, E R Fernandez et al. Organometallics, 2007, 26:1744~1749.

    37. [37]

      [37] G Y Xie, T C Li, A Q Zhang. Inorg. Chem. Commun., 2010, 13:1199~1202.

    38. [38]

      [38] 吴韦, 徐韬, 宁英男等. 化学通报, 2015, 78(4):305~311.

    39. [39]

      [39] V Aliyev, F Mosa, M Ali-Hazmi. USP:0292423-A1,2010.

    40. [40]

      [40] J L Zhang, P Y Qiu, Z Liu et al. ACS Catalysis, 2015, 5:3562~3574.

  • 加载中
    1. [1]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    2. [2]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    3. [3]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    4. [4]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    5. [5]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    6. [6]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    7. [7]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    8. [8]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

    9. [9]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    10. [10]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    11. [11]

      Lele FengXueying BaiJifeng PangHongchen CaoXiaoyan LiuWenhao LuoXiaofeng YangPengfei WuMingyuan Zheng . Single-atom Pd boosted Cu catalysts for ethanol dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(9): 100100-0. doi: 10.1016/j.actphy.2025.100100

    12. [12]

      Huiwei DingBo PengZhihao WangQiaofeng Han . Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2305048-0. doi: 10.3866/PKU.WHXB202305048

    13. [13]

      Yushan CaiFang-Xing Xiao . Revisiting MXenes-based Photocatalysis Landscape: Progress, Challenges, and Future Perspectives. Acta Physico-Chimica Sinica, 2024, 40(8): 2306048-0. doi: 10.3866/PKU.WHXB202306048

    14. [14]

      Juntao YanLiang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-0. doi: 10.3866/PKU.WHXB202312024

    15. [15]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    16. [16]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    17. [17]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    18. [18]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    19. [19]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    20. [20]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

Metrics
  • PDF Downloads(2)
  • Abstract views(443)
  • HTML views(43)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return