Citation:
Wang Jun, Huo Hongliang, Ma Lili, Li Cuiqin, Shi Weiguang. Progress in Catalytic Systems of Decene Synthesis from Ethylene Oligomerization[J]. Chemistry,
;2016, 79(1): 31-36,30.
-
As one of the basic materials in organic synthesis, decene plays an indispensable role in modern chemical production. The demand of decene is increasing year by year, while there is no one process route to produce decene from ethylene oligomerization directly at present. As a long-chain alkene, decene can be prepared by ethylene oligomerization. In this paper, we focused on the reaction of decene synthesis from ethylene oligomerization. We mainly expressed the research status and the achievements in Cr catalytic system which included the effect of the structure of catalysts on the selectivity of decene and the mechanism of polymerization. At the same time, we expounded the research status in Ni catalytic system which included the relationship between the structure of catalysts and the selectivity of decene, and the relationship between the structure of dendritic molecule and the selectivity of decene. Moreover, the progresses of Fe, Ti, Zr catalytic systems in the catalytic synthesis of decene from ethylene oligomerization were also described by some, hoping to provide theory bases for the development of new catalysts for producing decene.
-
-
-
[1]
[1] D J Yang, H J Kim, D H Kim. Catalysts, 2013, 3:176~188.
-
[2]
[2] H Ding, B Y Zhang, J Liu. Petrol. Sci. Technol., 2009, 27(17):1919~1925.
-
[3]
[3] A Hafizi, A Ahmadpour, M M Heravi et al. Chin. J. Catal., 2012, 33:494~501.
-
[4]
[4] 谭铁鸣. 华东理工大学工程硕士学位论文, 2011.
-
[5]
[5] O L Sydora, R D Knudsen, E J Baralt. USP:150642-A1,2013.
-
[6]
[6] K Son, R M Waymouth. Organometallics, 2010, 29(16):3515~3520.
-
[7]
[7] A Martínez, M A Arribas, P Concepción et al. Appl. Catal. A:Gen., 2013, 467:509~518.
-
[8]
[8] 王俊, 李云, 李翠勤等. 化工进展, 2012, 31(1):91~97.
-
[9]
[9] 王媚, 时鹏飞, 陈延辉等. 化工学报, 2014, 65(9):3485~3489.
-
[10]
[10] R Gao, T L Liang, F S Wang et al. J. Organomet. Chem., 2009, 694:3701~3707.
-
[11]
[11] M Zhang, K F Wang, W H Sun. Dalton Transac., 2009:6354~6363.
-
[12]
[12] Y Yang, J Gurnham, B P Liu et al. Organometallics, 2014, 33:5749~5757.
-
[13]
[13] 王雅珍, 王力博, 陈洁等. 化工进展, 2011, 30(3):520~523.
-
[14]
[14] Y Yang, H Kim, J Lee et al. Appl. Catal. A:Gen., 2000, 193:29~38.
-
[15]
[15] T M Zilbershtein, A A Nosikov, A I Kochnev et al. Petrol. Chem., 2012, 52(4):253~260.
-
[16]
[16] S F Liu, R Peloso, R Pattacini et al. Dalton Transac., 2010, 39:7881~7883.
-
[17]
[17] S F Liu, R Pattacini, P Braunstein. Organometallics, 2011, 30:3549~3558.
-
[18]
[18] F Junges, M C A Kuhn, A H D P Santos et al. Organometallics, 2007, 26(16):4010~4014.
-
[19]
[19] Z B Guan, C S Popeney. Top. Organomet. Chem., 2009, 26:179~220.
-
[20]
[20] P R Elowe, C McCann, P G Pringle et al. Organometallics, 2006, 25:5255~5260.
-
[21]
[21] Y J Chen, W W Zuo, P Hao et al. J. Organomet. Chem., 2008, 693:750~762.
-
[22]
[22] L W Xiao, M Zhang, W H Sun. Polyhedron, 2010, 29:142~147.
-
[23]
[23] L H Do, J A Labinger, J E Bercaw. Organometallics, 2012, 31:5143~5149.
-
[24]
[24] L H Do, J A Labinger, J E Bercaw. Catalysis, 2013, 3:2582~2585.
-
[25]
[25] T M Zilbershtein, V A Kardash, V V Suvorova et al. Appl. Catal. A:Gen., 2014, 475:371~378.
-
[26]
[26] Y Suzuki, S Kinoshita, A Shibahara et al. Organometallics, 2010, 29(11):2394~2396.
-
[27]
[27] S L Wang, W H Sun, C Redshaw. J. Organometallic Chem., 2014, 751:717~741.
-
[28]
[28] D M Singleton. USP:4,503,280-A,1985.
-
[29]
[29] 杨磊杰, 王文珍, 吴洋. 化学通报, 2014, 77(10):951~960.
-
[30]
[30] F S Liu, H Y Gao, K M Song et al. Polyhedron, 2009, 28:1386~1392.
-
[31]
[31] Y Y Wang, S A Lin, F M Zhu et al. Inorg. Chim. Acta, 2009, 362:166~172.
-
[32]
[32] T Ahamad, S M Alshehri, S F Mapolie. Catal. Lett., 2010, 138:171~179.
-
[33]
[33] H B Hu, L Zhang, H Y Gao et al. Chem. Eur. J., 2014, 20:3225~3233.
-
[34]
[34] J Wang, P Zhang, S Chen et al. J. Macromol. Sci., Part A:Pure Appl. Chem., 2013, 50:163~167.
-
[35]
[35] 王俊, 王海琛, 李翠勤等. 石油学报(石油加工), 2013, 29(5):920~928.
-
[36]
[36] B L Small, R Rios, E R Fernandez et al. Organometallics, 2007, 26:1744~1749.
-
[37]
[37] G Y Xie, T C Li, A Q Zhang. Inorg. Chem. Commun., 2010, 13:1199~1202.
-
[38]
[38] 吴韦, 徐韬, 宁英男等. 化学通报, 2015, 78(4):305~311.
-
[39]
[39] V Aliyev, F Mosa, M Ali-Hazmi. USP:0292423-A1,2010.
-
[40]
[40] J L Zhang, P Y Qiu, Z Liu et al. ACS Catalysis, 2015, 5:3562~3574.
-
[1]
-
-
-
[1]
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
-
[2]
Fangxuan Liu , Ziyan Liu , Guowei Zhou , Tingting Gao , Wenyu Liu , Bin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071
-
[3]
Qing Li , Guangxun Zhang , Yuxia Xu , Yangyang Sun , Huan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045
-
[4]
Xi YANG , Chunxiang CHANG , Yingpeng XIE , Yang LI , Yuhui CHEN , Borao WANG , Ludong YI , Zhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371
-
[5]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[6]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[7]
Xuejie Wang , Guoqing Cui , Congkai Wang , Yang Yang , Guiyuan Jiang , Chunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044
-
[8]
Xueting Feng , Ziang Shang , Rong Qin , Yunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005
-
[9]
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002
-
[10]
Haodong JIN , Qingqing LIU , Chaoyang SHI , Danyang WEI , Jie YU , Xuhui XU , Mingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048
-
[11]
Lele Feng , Xueying Bai , Jifeng Pang , Hongchen Cao , Xiaoyan Liu , Wenhao Luo , Xiaofeng Yang , Pengfei Wu , Mingyuan Zheng . Single-atom Pd boosted Cu catalysts for ethanol dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(9): 100100-0. doi: 10.1016/j.actphy.2025.100100
-
[12]
Huiwei Ding , Bo Peng , Zhihao Wang , Qiaofeng Han . Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2305048-0. doi: 10.3866/PKU.WHXB202305048
-
[13]
Yushan Cai , Fang-Xing Xiao . Revisiting MXenes-based Photocatalysis Landscape: Progress, Challenges, and Future Perspectives. Acta Physico-Chimica Sinica, 2024, 40(8): 2306048-0. doi: 10.3866/PKU.WHXB202306048
-
[14]
Juntao Yan , Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-0. doi: 10.3866/PKU.WHXB202312024
-
[15]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016
-
[16]
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
-
[17]
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
-
[18]
Yang WANG , Xiaoqin ZHENG , Yang LIU , Kai ZHANG , Jiahui KOU , Linbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165
-
[19]
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
-
[20]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[1]
Metrics
- PDF Downloads(2)
- Abstract views(444)
- HTML views(43)