Citation: Chen Guangying, Zhao Bo, Wang Cheng, Jing Ping, Xiao Yu, Niu Meng, Zhao Pengcheng. Gradient Membrane Electrode Assembly of Proton Exchange Membrane Fuel Cell[J]. Chemistry, ;2016, 79(1): 9-15. shu

Gradient Membrane Electrode Assembly of Proton Exchange Membrane Fuel Cell

  • Corresponding author: Wang Cheng, 
  • Received Date: 29 June 2015
    Available Online: 5 August 2015

  • To achieve proton exchange membrane fuel cell long-life high-performance (high power density or high current density) power generation at low cost (low platinum loading), gradient design is introduced into fabrication of MEA. Gradient MEA includes gradient of each MEA assembly:gradient PTFE content and porosity of gas diffusion layer, gradient content of catalyst and Nafion in catalyst layer, and gradient hydrophobicity and porosity of micro-porous layer. Gradient MEA has reasonable distribution of catalyst, porosity and hydrophilicity/hydrophobicity, together with good three phase boundary and multiphase mass transmission channels (e.g. proton,electron,reactant gas and water transmission channels), thus achieving stable high performance of PEMFC at circumstance of low Pt loading, low humidity and high current density. Manufacturing methods, performance and structure-activity relationship of gradient MEA are reviwed in this paper based on the latest research literatures and patents,which has guiding significance for developing of low cost, long-life and high performance MEA.
  • 加载中
    1. [1]

      [1] 衣宝廉.燃料电池——原理·技术·应用. 北京:化学工业出版社,2003.

    2. [2]

      [2] U S DRIVE Partnership. Fuel Cell Technical Team Roadmap,(2013-06)[2014-06-01] http://energy.gov/sites/prod/files/2014/02/f8/fctt_roadmap_june2013.pdf.

    3. [3]

      [3] Y Wang, K S Chen, J Mishler. Appl. Energy, 2011, 88(4):981~1007.

    4. [4]

      [4] A A Shah, K H Luo, T R Ralph. Electrochim, Acta, 2011, 56(11):3731~3757

    5. [5]

      [5] 张学伟. 哈尔滨工业大学硕士学位论文,2003.

    6. [6]

      [6] 苏华能.华南理工大学学位论文, 2010.

    7. [7]

      [7] G Acres, J Frost, G Hards. Catal. Today, 1997, 38(4):393~400

    8. [8]

      [8] Y X Huang. Energy, 2010,35:4786~4794

    9. [9]

      [9] H S Chu, C Yeh, F L Chen. J. Power Sources, 2003, 123:1~9.

    10. [10]

      [10] ASHRAE Handbook, Fundamentals, American Society of Heating,Refrigerating and Air-Conditioning Engineers Inc., 1981.

    11. [11]

      [11] J Kim, S M Lee, S Srinivasan. J. Electrochem. Soc., 1995, 142:2670~2674.

    12. [12]

      [12] J H Lee, T R Lalk, A J Appleby. J. Power Sources, 1998, 70:258~268.

    13. [13]

      [13] 詹志刚,张永生,肖金生等.华中科技大学学报,2007, 35(9):45~48.

    14. [14]

      [14] Z G Zhan. Int. J. Hydrogen Energy, 2007, 32:4443~4451.

    15. [15]

      [15] F L Chen, M H Chang, P T Hsieh. Int. J. Hydrogen Energy, 2008, 33:2525~2529.

    16. [16]

      [16] R Vijay, S K Seshadri, P Haridoss. Transac. Inst. Met.,2011, 64:175~179.

    17. [17]

      [17] A M Kannan, L Cindrella, L Munukutla. Electrochim. Acta, 2008, 53:2416~2422.

    18. [18]

      [18] M Mathias, J Roth, J Fleming et al. in:W Vielstich, A Lamm, H Gasteiger (Eds.), Handbook of Fuel Cells-Fundamentals, Technology and Applications, 2003, (3):1~21.

    19. [19]

      [19] H K Atiyeh, K Karan, B Peppley et al. J. Power Sources, 2007, 170:111~121.

    20. [20]

      [20] X L Wang, H M Zhang, J L Zhang et al. J. Power Sources, 2006, 162:474~479.

    21. [21]

      [21] H L Tang, S L Wang, M Pan et al. J. Power Sources, 2007, 166:41~46.

    22. [22]

      [22] J H Chun, D H Jo, S G Kim et al. Renew. Energy, 2013, 58:28~33.

    23. [23]

      [23] S Park, J W Lee, B N Popov. J. Power Sources, 2008, 177:457~463.

    24. [24]

      [24] F B Weng, C Y Hsu, M C Su. Int. J. Hydrogen Energy, 2011, 36:13708~13714.

    25. [25]

      [25] N Rajalakshmi, K S Dhathathreyan. Chem. Eng., 2007, 129(1/3):31~40.

    26. [26]

      [26] J J Zhang. Fundamentals and Applications. Berlin:Springer Science + Business Media, 2008.

    27. [27]

      [27] S Srinivasan, E A Ticianelli, C R Derouin. J. Power Sources, 1988, 22:359~375.

    28. [28]

      [28] I D Raistrick. USP. 4876,115, 1989.

    29. [29]

      [29] E A Ticianelli, J G Beery, S Srinivasan. J. Appl. Electrochem., 1991, 21:597~605.

    30. [30]

      [30] M Uchida, Y Aoyama, N Eda et al. J. Electrochem. Soc., 1995, 142:463~468.

    31. [31]

      [31] M Uchida, Y Aoyama, N Eda et al. J. Electrochem. Soc., 1995, 142:4143~4149.

    32. [32]

      [32] Q P Wang, M Eikerling, D T Song et al. J. Electrochem. Soc., 2004, (7):A950~A957.

    33. [33]

      [33] Z Xie, T Navessin, K Shi et al. J. Electrochem. Soc., 2005, (6):A1171~A1179.

    34. [34]

      [34] K H Kim, H J Kim, K Y Lee et al. Int. J. Hydrogen Energy, 2008, 33:2783~2789.

    35. [35]

      [35] 董明全, 张华民, 马海鹏等.电池, 2010,(4):191~193.

    36. [36]

      [36] H N Su, S J Liao, Y N Wu. J. Power Sources, 2010, 195:3477~3480.

    37. [37]

      [37] E Passalacqua, F Lufrano, G Squadrito et al. Electrochim. Acta,2001,46:799~805.

    38. [38]

      [38] D Song, Q Wang, Z Liu et al. Electrochim.Acta, 2005, 50:3347~3358.

    39. [39]

      [39] M Santis, S A Freunberger, A Reiner et al. Electrochim. Acta, 2006, 51:5383~5393.

    40. [40]

      [40] M Prasanna, E A Cho, H J Kim et al. J. Power Sources, 2007, 166:53~58.

    41. [41]

      [41] S Y Lee, H J Kim, K H Kim et al. Electrochem. Solid-State Lett., 2007, 10:B166~B169.

    42. [42]

      [42] H Matsuda, K Fushinobu, A Ohma et al. J. Therm. Sci. Technol., 2011, 6154~163.

    43. [43]

      [43] M Srinivasarao, D Bhattacharyya, R Rengaswamy et al. Int. J. Hydrogen Energy, 2010, 35:6356~6365.

  • 加载中
    1. [1]

      Yixuan WangCanhui ZhangXingkun WangJiarui DuanKecheng TongShuixing DaiLei ChuMinghua Huang . Engineering Carbon-Chainmail-Shell Coated Co9Se8 Nanoparticles as Efficient and Durable Catalysts in Seawater-Based Zn-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2305004-0. doi: 10.3866/PKU.WHXB202305004

    2. [2]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    3. [3]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    4. [4]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    5. [5]

      Yu WangHaiyang ShiZihan ChenFeng ChenPing WangXuefei Wang . 具有富电子Ptδ壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081

    6. [6]

      Xueting CaoShuangshuang ChaMing Gong . Interfacial Electrical Double Layer in Electrocatalytic Reactions: Fundamentals, Characterizations and Applications. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-0. doi: 10.1016/j.actphy.2024.100041

    7. [7]

      Tianqi BaiKun HuangFachen LiuRuochen ShiWencai RenSongfeng PeiPeng GaoZhongfan Liu . Nanoscale Mechanism of Microstructure-Dependent Thermal Diffusivity in Thick Graphene Sheets. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-0. doi: 10.3866/PKU.WHXB202404024

    8. [8]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    9. [9]

      Da WangXiaobin YinJianfang WuYaqiao LuoSiqi Shi . All-Solid-State Lithium Cathode/Electrolyte Interfacial Resistance: From Space-Charge Layer Model to Characterization and Simulation. Acta Physico-Chimica Sinica, 2024, 40(7): 2307029-0. doi: 10.3866/PKU.WHXB202307029

    10. [10]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    11. [11]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    12. [12]

      Jiandong LiuXin LiDaxiong WuHuaping WangJunda HuangJianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039

    13. [13]

      Yingying Chen Di Xu Congmin Wang . Exploration and Practice of the “Four-Level, Three-Linkage” General Chemistry Course System. University Chemistry, 2024, 39(8): 119-125. doi: 10.3866/PKU.DXHX202401057

    14. [14]

      Dong XiangKunzhen LiKanghua MiaoRan LongYujie XiongXiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027

    15. [15]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    16. [16]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    17. [17]

      Shanghua LiMalin LiXiwen ChiXin YinZhaodi LuoJihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003

    18. [18]

      Shi-Yu LuWenzhao DouJun ZhangLing WangChunjie WuHuan YiRong WangMeng Jin . Amorphous-Crystalline Interfaces Coupling of CrS/CoS2 Few-Layer Heterojunction with Optimized Crystallinity Boosted for Water-Splitting and Methanol-Assisted Energy-Saving Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(8): 2308024-0. doi: 10.3866/PKU.WHXB202308024

    19. [19]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    20. [20]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

Metrics
  • PDF Downloads(0)
  • Abstract views(626)
  • HTML views(73)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return