Citation: Zhang Chunxi, Chen Changhui, Chang Wenyan, Dong Hongxing. Catalysts for Water-Splitting Reaction in Natural and Artificial Photosynthesis[J]. Chemistry, ;2016, 79(1): 4-8. shu

Catalysts for Water-Splitting Reaction in Natural and Artificial Photosynthesis

  • Received Date: 18 August 2015
    Available Online: 2 September 2015

    Fund Project:

  • The structure of the catalytic center for water-splitting reaction in natural photosynthesis has been revealed recently, which provides a blueprint for the development of artificial water-splitting catalyst in artificial photosynthesis. Mimicking the natural catalyst to prepare efficient and low-cost artificial catalysts and produce electric energy and/or hydrogen energy by using sun light and water has been considered to be an ideal way to solve the energy crisis and environmental pollution of our society. This field is a well-known major scientific frontier and may be crucial for both fundamental scientific research and potential application. Here, recent advance of the water-splitting catalyst in natural and artificial photosynthesis was reviewed.
  • 加载中
    1. [1]

      [1] J R Shen. Ann. Rev. Plant Biol., 2015, 66:23~48.

    2. [2]

      [2] J Yano, V Yachandra. Chem. Rev., 2014, 114:4175~4205.

    3. [3]

      [3] M D Kärkäs, O Verho, E V Johnston et al. Chem. Rev., 2014, 114:11863~12001.

    4. [4]

      [4] J Barber. Chem. Soc. Rev., 2009, 38:185~196.

    5. [5]

      [5] J M Peloquin, R D Britt. Biochim. Biophys. Acta, 2001, 1503:96~111.

    6. [6]

      [6] H Dau, A Grundmeier, P Loja et al. Phil. Transac. R. Soc. Lond. B, 2008, 363:1237~1244.

    7. [7]

      [7] P E M Siegbahn. Biochim. Biophys. Acta, 2013, 1827:1003~1019.

    8. [8]

      [8] C Tommos, G T Babcock. Acc. Chem. Res., 1998, 31:18~25.

    9. [9]

      [9] C Zhang, J Pan, L Li et al. Chin. Sci. Bull., 1999, 44:2209~2215.

    10. [10]

      [10] A Zouni, H T Witt, J Kern et al. Nature, 2001, 409:739~743.

    11. [11]

      [11] N Kamiya, J R Shen. PNAS, 2003, 100:98~103.

    12. [12]

      [12] K N Ferreira, T M Iverson, K Maghlaoui et al. Science, 2004, 303:1831~1838.

    13. [13]

      [13] B Loll, J Kern, W Saenger et al. Nature, 2005, 438:1040~1044.

    14. [14]

      [14] J Yano, J Kern, K Sauer et al. Science, 2006, 314:821~825.

    15. [15]

      [15] A Guskov, J Kern, A Gabdulkhakov et al. Nat. Struct. Mol. Biol., 2009, 16:334~342.

    16. [16]

      [16] J Yano, J Kern, K D Irrgang et al. PNAS, 2005, 102:12047~12052.

    17. [17]

      [17] M Grabolle, M Haumann, C Müller et al. J. Biol. Chem., 2006, 281:4580~4588.

    18. [18]

      [18] Y Umena, K Kawakami, J R Shen et al. Nature, 2011, 473:55~60.

    19. [19]

      [19] M Suga, F Akita, K Hirata et al. Nature, 2015, 517:99~103.

    20. [20]

      [20] F H M Koua, Y Umena, K Kawakami et al. PNAS, 2013, 110:3889~3894.

    21. [21]

      [21] C F Yocum. Coord. Chem. Rev., 2008, 252:296~305.

    22. [22]

      [22] N Cox, D A Pantazis, F Neese et al. Acc. Chem. Res., 2013, 46:1588~1596.

    23. [23]

      [23] H Dau, M Haumann. Coord. Chem. Rev., 2008, 252:273~295.

    24. [24]

      [24] H Nilsson, F Rappaport, A Boussac et al. Nat. Commun., 2014, 5:4305.

    25. [25]

      [25] N Cox, J Messinger. Biochim. Biophys. Acta, 2013, 1827:1020~1030.

    26. [26]

      [26] L Wang, C Zhang, J Zhao. J. Photochem. Photobiol. B, 2014, 138:249~255.

    27. [27]

      [27] Y Ren, C Zhang, J Zhao. Biochim. Biophys. Acta, 2010, 1797:1421~1427.

    28. [28]

      [28] S Mukhopadhyay, S K Mandal, S Bhaduri et al. Chem. Rev., 2004, 104:3981~4026.

    29. [29]

      [29] E Y Tsui, J S Kanady, T Agapie. Inorg. Chem., 2013, 52:13833~13848.

    30. [30]

      [30] C Zhang. Sci. Chin. Life Sci., 2015, 58:816~817.

    31. [31]

      [31] L Duan, F Bozoglian, S Mandal et al. Nat. Chem., 2012, 4:418~423.

    32. [32]

      [32] L Wang, L Duan, Y Wang et al. Chem. Commun., 2014, 50:12947~12950.

    33. [33]

      [33] C C L McCrory, S Jung, I M Ferrer et al. J. Am. Chem. Soc., 2015, 137:4347~4357.

    34. [34]

      [34] J P McEvoy, G W Brudvig. Chem. Rev., 2006, 106:4455~4483.

    35. [35]

      [35] G C Dismukes, R Brimblecombe, G A N Felton et al. Acc. Chem. Res., 2009, 42:1935~1943.

    36. [36]

      [36] J S Kanady, E Y Tsui, M W Day et al. Science, 2011, 333:733~736.

    37. [37]

      [37] E Y Tsui, T Agapie. PNAS, 2013, 110:10084~10088.

    38. [38]

      [38] S Mukherjee, J A Stull, J Yano et al. PNAS, 2012, 109:2257~2262.

    39. [39]

      [39] C Chen, C Zhang, H Dong et al. Chem. Commun., 2014, 50:9263~9265.

    40. [40]

      [40] C Chen, C Zhang, H Dong et al. Dalton Transac., 2015, 44:4431~4435.

    41. [41]

      [41] C Zhang. Biochim. Biophys. Acta, 2007, 1767:493~499.

    42. [42]

      [42] C Zhang, S Styring. Biochemistry, 2003, 42:8066~8076.

    43. [43]

      [43] C Zhang, C Chen, H Dong et al. Science, 2015, 348:690~693.

  • 加载中
    1. [1]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    2. [2]

      Lei Shu Zimin Duan Yushen Kang Zijian Zhao Hong Wang Lihua Zhu Hui Xiong Nan Wang . An Exploration of the CO2-Involved Carbon Cycle World. University Chemistry, 2024, 39(5): 144-153. doi: 10.3866/PKU.DXHX202309084

    3. [3]

      Jingyi XieQianxi LüWeizhen QiaoChenyu BuYusheng ZhangXuejun ZhaiRenqing LüYongming ChaiBin Dong . Enhancing Cobalt―Oxygen Bond to Stabilize Defective Co2MnO4 in Acidic Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305021-0. doi: 10.3866/PKU.WHXB202305021

    4. [4]

      Wei ZhongDan ZhengYuanxin OuAiyun MengYaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005

    5. [5]

      Yuxin CHENYanni LINGYuqing YAOKeyi WANGLinna LIXin ZHANGQin WANGHongdao LIWenmin WANG . Construction, structures, and interaction with DNA of two Sm4 complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1141-1150. doi: 10.11862/CJIC.20240258

    6. [6]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    7. [7]

      Jie WUZhihong LUOXiaoli CHENFangfang XIONGLi CHENBiao ZHANGBin SHIQuansheng OUYANGJiaojing SHAO . Critical roles of AlPO4 coating in enhancing cycling stability and rate capability of high voltage LiNi0.5Mn1.5O4 cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 948-958. doi: 10.11862/CJIC.20240400

    8. [8]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

    9. [9]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    10. [10]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    11. [11]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    12. [12]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    13. [13]

      Xudong LvTao ShaoJunyan LiuMeng YeShengwei Liu . Paired Electrochemical CO2 Reduction and HCHO Oxidation for the Cost-Effective Production of Value-Added Chemicals. Acta Physico-Chimica Sinica, 2024, 40(5): 2305028-0. doi: 10.3866/PKU.WHXB202305028

    14. [14]

      Shi-Yu LuWenzhao DouJun ZhangLing WangChunjie WuHuan YiRong WangMeng Jin . Amorphous-Crystalline Interfaces Coupling of CrS/CoS2 Few-Layer Heterojunction with Optimized Crystallinity Boosted for Water-Splitting and Methanol-Assisted Energy-Saving Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(8): 2308024-0. doi: 10.3866/PKU.WHXB202308024

    15. [15]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    16. [16]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    17. [17]

      Chengbin Gong Guona Zhang Qian Tang Hong Lei Ling Kong Wenshan Ren . Development of a Practical Teaching System for the Applied Chemistry Major Emphasizing “Industry-Education Integration, University-Enterprise Cooperation, and Multi-Dimensional Combination”. University Chemistry, 2024, 39(6): 220-225. doi: 10.3866/PKU.DXHX202309104

    18. [18]

      Qingchao Liu Chunmei Liu Youcai Lu Zongpei Zhang Zhaohui Li . Scanning Electron Microscopy in Higher Education: Bridging Educational Innovation and Scientific Collaboration. University Chemistry, 2025, 40(7): 308-314. doi: 10.12461/PKU.DXHX202408087

    19. [19]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004

    20. [20]

      Jinwei Duan Ying Wang Lin Cui Huayu Zheng Kang Wang Yinghui Wang Shanshan Wang Jiajia Li Qizhao Wang . Exploration and Practice in the Construction of Ideological and Political Education for the Foundational Course “General Chemistry” Based on Cultural Confidence in Sino-Foreign Cooperative Education. University Chemistry, 2024, 39(4): 227-237. doi: 10.3866/PKU.DXHX202310052

Metrics
  • PDF Downloads(21)
  • Abstract views(621)
  • HTML views(88)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return