Citation: Wang Dandan, Gao Ya, Yang Xiaofeng. Molecular Dynamics Simulation on Diffusion Properties of the Binary Components in Zeolite ITQ-3[J]. Chemistry, ;2016, 79(3): 268-271. shu

Molecular Dynamics Simulation on Diffusion Properties of the Binary Components in Zeolite ITQ-3

  • Corresponding author: Wang Dandan, 
  • Received Date: 18 July 2015
    Available Online: 28 October 2015

  • The equilibrium molecular dynamic simulation was carried out to study the diffusion behavior of pure component and the binary components in zeolite ITQ-3. For pure Ar, the diffusion coefficient along the z direction is an increasing function as the loading increase and reaches a maximum value at some intermediate loading level, and then it decreases at higher loading level. But in the y direction, the diffusion coefficient decreases monotonically as increasing of the loading. For SF6 and CF4, the diffusion coefficients along the y direction were same as the function of Ar in the z direction. Then the diffusion coefficients of binary components SF6/CF4 in zeolite ITQ-3 had been studied using molecular dynamic simulation methods. It was noted that the diffusion coefficients of binary components retains the trend of their pure component, however CF4 diffused much more slowly in the mixture than as a pure species. Compared to the pure SF6, the diffusion coefficient of SF6 in the mixture was increased. It appears to be due to the influence of coupling effect between diffusing species.
  • 加载中
    1. [1]

      [1] Y B Shreyas, S Yashonath. J. Phys. Chem. A, 2002, 106(31):7130~7137.

    2. [2]

      [2] 陈玉平,吕玲红, 邵庆等. 物理化学学报, 2007, 23(6):905~910.

    3. [3]

      [3] P H Karger. Zeolites, 1987, 7:90~107.

    4. [4]

      [4] A I Skoulidas, D S Sholl. J. Phys. Chem. B, 2002, 106(19):5058~5067.

    5. [5]

      [5] C Tunca, D M Ford. Chem. Eng. Sci., 2003, 58(15):3373~3383.

    6. [6]

      [6] 杨晓峰, 秦张峰, 王建国. 物理化学学报. 2008, 24(11):2128~2132.

    7. [7]

      [7] 霍瑞霞,刘俊,杨晓峰. 高等学校化学学报, 2010, 31(7):1431~1435.

    8. [8]

      [8] 邹桂敏,杨晓峰.中北大学学报, 2011, 32(5):609~612.

    9. [9]

      [9] M Lindsey, H Henry, R Colin. Langmuir, 2011, 27(5):1954~1963.

    10. [10]

      [10] A I Skoulidas, D S Sholl. J. Phys. Chem. A, 2003, 107(47):10132~10141.

    11. [11]

      [11] D Silvia, S Hubert. J. Phys. Chem. B, 2003, 107(50):14000~14006.

    12. [12]

      [12] K Refson. Comput. Phys. Commun., 2000, 126(3):310~329.

    13. [13]

      [13] D S Sholl. Acc. Chem. Res., 2006, 39(6):403~411.

    14. [14]

      [14] J Caro, M Noack, P Kolsch et al. Micropor. Mesopor. Mater., 2000, 38(1):3~24.

    15. [15]

      [15] S G Li, J L Falconer. Ind. Eng. Chem. Res., 2007, 46(12):3904~3911.

    16. [16]

      [16] J Graaf, F Kapteijn, J A Moulijn. AIChE J., 1999, 45(3):497~511.

    17. [17]

      [17] I Hussain, J O Titiloye. Micropor. Mesopor. Mater., 2005, 85(1):143~156.

    18. [18]

      [18] L N Gergidis, D N Theodorou. J. Phys. Chem. B, 1999, 103(17):3380~3390.

    19. [19]

      [19] R Krishna. Chem. Phys. Lett., 2002, 355(5):483~489.

    20. [20]

      [20] R Krishna, J M van Baten. Chem. Eng. Technol., 2006, 29(12):1429~1437.

    21. [21]

      [21] R Krishna. Chem. Eng. Sci., 2009, 64(13):3159~3178.

  • 加载中
    1. [1]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    2. [2]

      Xiaochen ZhangFei YuJie Ma . Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-0. doi: 10.3866/PKU.WHXB202311026

    3. [3]

      Shanghua LiMalin LiXiwen ChiXin YinZhaodi LuoJihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003

    4. [4]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    5. [5]

      Tianqi BaiKun HuangFachen LiuRuochen ShiWencai RenSongfeng PeiPeng GaoZhongfan Liu . Nanoscale Mechanism of Microstructure-Dependent Thermal Diffusivity in Thick Graphene Sheets. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-0. doi: 10.3866/PKU.WHXB202404024

    6. [6]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    7. [7]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    8. [8]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    9. [9]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    10. [10]

      Pei LiYuenan ZhengZhankai LiuAn-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 2406012-0. doi: 10.3866/PKU.WHXB202406012

    11. [11]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    12. [12]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    13. [13]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    14. [14]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    15. [15]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    16. [16]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    17. [17]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    18. [18]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    19. [19]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    20. [20]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

Metrics
  • PDF Downloads(0)
  • Abstract views(300)
  • HTML views(30)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return