Citation: Zhang Tianyong, Liu Qian, Li Bin, Zhang Guoling, Chen Song, An Jing, Wang Shuhua. Study on Water Removal Control in Synthesis and Purification of Bisphenol S[J]. Chemistry, ;2016, 79(3): 259-263,237. shu

Study on Water Removal Control in Synthesis and Purification of Bisphenol S

  • Corresponding author: Li Bin, 
  • Received Date: 1 July 2015
    Available Online: 10 October 2015

    Fund Project:

  • The effects of different refluxing and water removal time on the synthesis of bisphenol S are studied when one water distributor or two water distributors are installed. The water removal efficiency can be significantly improved with two water distributors. The refluxing time can be reduced and the crude yield can also be increased. The preferred conditions are as follows: 492.5g phenol, 500g mesitylene and 25g 2,6-naphthalene disulfonic acid are mixed, then 256g concentrated sulfuric acid is dropped, after which refluxing is kept for 6.5h. The crude yield is more than 99% and the mass fraction of bisphenol S is 96.69%. In the purification of bisphenol S, a single alcohol-mesitylene and mixed alcohol-mesitylene system are compared. Taking the cost, yield, color and other aspects into accounts, the mixed alcohol including isopropanol and isoamyl alcohol is better than a single isopropanol. In the selection of the decolorants, the activated carbon for sugar is much better. The preferred conditions of a single alcohol-mesitylene system are as follows: 11.1g crude wet product is dissolved in 44.4g isopropanol, after 66.6g mesitylene and 1.11g activated carbon for sugar are added, the whole system is stirred and decolored under 60℃ for 1h. The yield is 97.0% and the mass fraction of bisphenol S is 99.89%. The preferred conditions of mixed alcohol-mesitylene system are as follows:10g crude product is dissolved in 40g mixed alcohol(isopropanol:isoamyl alcohol=1:1), after 60g mesitylene and 1g activated carbon are added, the whole system is stirred and decolored under 60℃ for 1h. The final yield is 90.6% and the mass fraction of bisphenol S is 99.87%.
  • 加载中
    1. [1]

      [1] 章思规,章伟. 精细有机化工制备手册(上). 北京:化学工业出版社,2004.

    2. [2]

      [2] 张翠润. 上海化工,1990,15(5):45~47.

    3. [3]

      [3] 金范龙,衣守志,王广铨等. 吉林化工学院学报,1996,1(13):18~20.

    4. [4]

      [4] 沈俊杰. CN:104312157A, 2015.

    5. [5]

      [5] 何宗发. CN:104292760A. 2015.

    6. [6]

      [6] 高社章. CN:104293270A. 2015.

    7. [7]

      [7] 王寿高. CN:104212392A. 2014.

    8. [8]

      [8] V Claus, K Hartmut, Q Annett et al. React. Funct. Polym., 2011, 71(8):828~842.

    9. [9]

      [9] L Nadia, C Martino, F Maurizio et al. J.Appl. Polym. Sci., 2013, 128(1):416~423.

    10. [10]

      [10] L Nadia, C Martino, F Maurizio et al. Polymer, 2011, 52(4):904~911.

    11. [11]

      [11] 邵红飞.天津大学学位论文,2006.

    12. [12]

      [12] 邱明艳. 天津大学学位论文,2005.

    13. [13]

      [13] 金范龙,赵哲山. 化工时刊,1997,6(11):21~22.

    14. [14]

      [14] 张天永,朱佳佑,李彬等. 化工进展,2013,32(11):2719~2722.

    15. [15]

      [15] 陈锡如,章书兰,石成凤. 成都科技大学学报,1991,(4):21~28.

    16. [16]

      [16] 张天永,朱佳佑,李彬等. 现代化工,2014,34(2):113~116.

    17. [17]

      [17] A B Ernst, G Caspari. US:4996367A, 1991.

    18. [18]

      [18] A Josef. CS:257071B1, 1988.

    19. [19]

      [19] H Tomoya. WO:2002102720, 2002.

    20. [20]

      [20] T W Sauls, C Park. US:2833828, 1958.

    21. [21]

      [21] G C Vegter, M M De Brabander. US:3065274, 1962.

  • 加载中
    1. [1]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    2. [2]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    3. [3]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    4. [4]

      Yiling Wu Peiyao Jin Shenyue Tian Ji Zhang . The Star of Sugar Substitutes: An Interview of Erythritol. University Chemistry, 2024, 39(9): 22-27. doi: 10.12461/PKU.DXHX202404034

    5. [5]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    6. [6]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    7. [7]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    8. [8]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    9. [9]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    10. [10]

      Mengyang LIHao XUZhonghao NIUChunhua GONGWeihui ZHONGJingli XIE . Highly effective catalytic synthesis of β-amino alcohols by using viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1294-1300. doi: 10.11862/CJIC.20250080

    11. [11]

      Yinjie XuSuiqin LiLihao LiuJiahui HeKai LiMengxin WangShuying ZhaoChun LiZhengbin ZhangXing ZhongJianguo Wang . Enhanced Electrocatalytic Oxidation of Sterols using the Synergistic Effect of NiFe-MOF and Aminoxyl Radicals. Acta Physico-Chimica Sinica, 2024, 40(3): 2305012-0. doi: 10.3866/PKU.WHXB202305012

    12. [12]

      Jin Yan Chengxia Tong Yajie Li Yue Gu Xuejian Qu Shigang Wei Wanchun Zhu Yupeng Guo . Construction of a “Dual Support, Triple Integration” Chemical Safety Practical Education System. University Chemistry, 2024, 39(7): 69-75. doi: 10.12461/PKU.DXHX202405008

    13. [13]

      Linghua Chen . 基于双联动“三学”模式的食品专业分析化学教学改革. University Chemistry, 2025, 40(8): 78-91. doi: 10.12461/PKU.DXHX202409095

    14. [14]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    15. [15]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    16. [16]

      Asif Hassan RazaShumail FarhanZhixian YuYan Wu . Double S-Scheme ZnS/ZnO/CdS Heterostructure Photocatalyst for Efficient Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-0. doi: 10.3866/PKU.WHXB202406020

    17. [17]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004

    18. [18]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    19. [19]

      Kaihui HuangDejun ChenXin ZhangRongchen ShenPeng ZhangDifa XuXin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-0. doi: 10.3866/PKU.WHXB202407020

    20. [20]

      Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378

Metrics
  • PDF Downloads(0)
  • Abstract views(601)
  • HTML views(123)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return