Citation:
Li Yanyan, Liu Yingya, Fan Xiao, Cao Yingnan, Wang Jiajia, Lu Jusheng, Qu Lulu, Geng Junfeng, Li Haitao. Progress in Detection Methods of Antibiotic Residues in Drinking Water[J]. Chemistry,
;2016, 79(3): 213-219.
-
Antibiotics as a type of medicine which kills bacterium or inhibits bacterial growth are widely applied to food, clinical practice, veterinary medicine and agriculture. However, its residue may penetrate surface water and thus portable water source which can not be cleared by standard water treatment method and harmful to human health and will cause disease (e.g. allergy, fever, drug resistance and aplastic anemia). Therefore, study on detection of antibiotic residues in drinking water attracts increasing attention recently. Here the progress in analysis methods (high-performance liquid chromatography, terahertz time-domain spectroscopy, immunoassays and surface-enhanced Raman spectroscopy) of antibiotic residues in drinking water are reviewed, and development in future as well as the problems of the present situation are also commented.
-
Keywords:
- Detection of antibiotic residues,
- HPLC,
- THz-TDS,
- Immunoassays,
- SERS
-
-
-
[1]
[1] R R Reinert, M van der Linden, I Seegmüller et al. Clin. Microbiol. Infect., 2007, 13(4):363~368.
-
[2]
[2] J Woo, E K Li. Infection, 1987, 15(2):129~130.
-
[3]
[3] D J Sexton, M J Tenenbaum, W R Wilson et al. Clin. Infecti. Diseas., 1998, 27(6):1470~1474.
-
[4]
[4] 金煜.科技致富向导, 2014,(10):5~5. DOI:10.3969/j.issn.1007-1547.2014.10.003.
-
[5]
[5] http://health.timedg.com/2014-12/26/content_15042942.htm
-
[6]
[6] 顾昀.兽医导刊, 2015, (1):1.
-
[7]
[7] http://tech.southcn.com/t/2014-12/26/content_115047952.htm
-
[8]
[8] 杜兆林,郑彤,刘丽艳等.持久性有机污染物论坛2011暨第六届持久性有机污染物全国学术研讨会论文集.2011:244~246.
-
[9]
[9] 2006 G B. 生活饮用水卫生标准, 2006.
-
[10]
[10] K Reddersen, T Heberer, U Dünnbier. Chemosphere, 2002, 49(6):539~544.
-
[11]
[11] http://news.southcn.com/china/content/2015-04/16/content_122347839_4.htm
-
[12]
[12] 毛跟年, 许牡丹, 黄建文. 环境中有毒有害物质与分析检测. 化学工业出版社环境科学与工程出版中心, 2004.
-
[13]
[13] M Seifrtová, L Nováková, C Lino et al. Anal. Chim. Acta, 2009, 649(2):158~179.
-
[14]
[14] N T Malintan, M A Mohd. J. Chromatogr. A, 2006, 1127(1):154~160.
-
[15]
[15] 洪波, 曾春芳, 高峰等. 湖南农业科学, 2013, 21:024.
-
[16]
[16] E Gikas, F N Bazoti, P Fanourgiakis et al. J. Pharma. Biomed. Anal., 2010, 51(4):901~906.
-
[17]
[17] S M Esponda, M E T Padrón, Z S Ferrera et al. Anal. Bioanal. Chem., 2009, 394(4):927~935.
-
[18]
[18] 谭建华, 唐才明, 余以义等.色谱, 2007, 25(4):546~549.
-
[19]
[19] B Kasprzyk-Hordern, R M Dinsdale, A J Guwy. J. Chromatogr. A, 2007, 1161(1):132~145.
-
[20]
[20] R Cazorla-Reyes, R Romero-González, A G Frenich et al. J. Pharma. Biomed. Anal., 2014, 89:203~212.
-
[21]
[21] 汪一帆, 尉万聪, 周凤娟等.生物化学与生物物理进展, 2010, 37(5):484~489.
-
[22]
[22] L Xie, W Gao, J Shu et al. Sci. Rep., 2015, DOI:10.1038/srep08671.
-
[23]
[23] 廉飞宇, 杨静, 付麦霞等.中国粮油学报, 2014, 29(8):111~116.
-
[24]
[24] 李利龙, 吴磊, 向洋等.光学与光电技术, 2014, 12(001):72~74.
-
[25]
[25] J Qin, L Xie, Y Ying. Anal. Chem., 2014, 86(23):11750~11757.
-
[26]
[26] M T Meyer, J E Bumgarner, J L Varns et al. Sci. Tot. Environ., 2000, 248(2):181~187.
-
[27]
[27] C Zhao, W Liu, H Ling et al. J. Agr. Food Chem., 2007, 55(17):6879~6884.
-
[28]
[28] H Font, J Adrian, R Galve et al. J. Agr. Food Chem., 2008, 56(3):736~743.
-
[29]
[29] C Cháfer-Pericás,ÁMaquieira, R Puchades et al. Anal. Chim. Acta, 2010, 662(2):177~185.
-
[30]
[30] C W Pyun, A M Abd El-Aty, M M M Hashim et al. Biomed. Chromatogr., 2008, 22(3):254~259.
-
[31]
[31] N E Virolainen, M G Pikkemaat, J W A Elferink et al. J. Agr. Food Chem., 2008, 56(23):11065~11070.
-
[32]
[32] J Lamar, M Petz. Anal. Chim. Acta, 2007, 586(1):296~303.
-
[33]
[33] J E Wu, C Chang, W P Ding et al. J. Agr. Food Chem., 2008, 56(18):8261~8267.
-
[34]
[34] F Conzuelo, M Gamella, S Campuzano et al. Anal. Chim. Acta, 2012, 737:29~36.
-
[35]
[35] F Conzuelo, S Campuzano, M Gamella et al. Biosens. Bioelect., 2013, 50:100~105.
-
[36]
[36] F Granados-Chinchilla, J Sánchez, F García et al. J. Agr. Food Chem., 2012, 60(29):7121~7128.
-
[37]
[37] P Chandra, H B Noh, M S Won et al. Biosen. Bioelect., 2011, 26(11):4442~4449.
-
[38]
[38] Q Wei, Y Zhao, B Du et al. Food Chem., 2012, 134(3):1601~1606.
-
[39]
[39] W Lian, J Huang, J Yu et al. Food Control, 2012, 26(2):620~627.
-
[40]
[40] W Lian, S Liu, J Yu et al. Biosens. Bioelect., 2012, 38(1):163~169.
-
[41]
[41] F Conzuelo, M Gamella, S Campuzano et al. Anal. Chem., 2013, 85(6):3246~3254.
-
[42]
[42] W Jin, G Yang, L Wu et al. Food Control, 2011, 22(10):1609~1616.
-
[43]
[43] L Yan, C Luo, W Cheng et al. J. Electroanal. Chem., 2012, 687:89~94.
-
[44]
[44] E Gustavsson. J. AOAC Int., 2006, 89(3):832~837.
-
[45]
[45] F Fernández, D G Pinacho, F Sánchez-Baeza et al. J. Agr. Food Chem., 2011, 59(9):5036~5043.
-
[46]
[46] Z Dong, G Huang, S Xu et al. J. Microsc., 2009, 234(3):255~261.
-
[47]
[47] J P Ferguson, G A Baxter, J D G McEvoy et al. Analyst, 2002, 127(7):951~956.
-
[48]
[48] M Frasconi, R Tel-Vered, M Riskin et al. Anal. Chem., 2010, 82(6):2512~2519.
-
[49]
[49] J Ferguson, A Baxter, P Young et al. Anal. Chim. Acta, 2005, 529(1):109~113.
-
[50]
[50] H Hu, Z Wang, S Wang et al. J.Alloys Compds., 2011, 509(5):2016~2020.
-
[51]
[51] S J Clarke, R E Littleford, W E Smith et al. Analyst, 2005, 130(7):1019~1026.
-
[52]
[52] L He, M Lin, H Li et al. J. Raman Spectrosc., 2010, 41(7):739~744.
-
[53]
[53] R Li, H Zhang, Q W Chen et al. Analyst, 2011, 136(12):2527~2532.
-
[54]
[54] A Koyun, E Ahlatcolu, Y Koca. Biosensors and their principles. A Roadmap of Biomedical Engineers and Milestones, 2012.
-
[55]
[55] S Wang, B Xu, Y Zhang et al. Meat Sci., 2009, 82(1):53~58.
-
[56]
[56] R Galarini, F Diana, S Moretti et al. Food Control, 2014, 35(1):300~310.
-
[1]
-
-
-
[1]
Zhuomin Zhang , Hanbing Huang , Liangqiu Lin , Jingsong Liu , Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034
-
[2]
Fan Wu , Wenchang Tian , Jin Liu , Qiuting Zhang , YanHui Zhong , Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031
-
[3]
Siming Bian , Sijie Luo , Junjie Ou . Application of van Deemter Equation in Instrumental Analysis Teaching: A New Type of Core-Shell Stationary Phase. University Chemistry, 2025, 40(3): 381-386. doi: 10.12461/PKU.DXHX202406087
-
[4]
Yue-Zhou Zhu , Kun Wang , Shi-Sheng Zheng , Hong-Jia Wang , Jin-Chao Dong , Jian-Feng Li . Application and Development of Electrochemical Spectroscopy Methods. Acta Physico-Chimica Sinica, 2024, 40(3): 2304040-0. doi: 10.3866/PKU.WHXB202304040
-
[5]
Liang MA , Honghua ZHANG , Weilu ZHENG , Aoqi YOU , Zhiyong OUYANG , Junjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075
-
[6]
Ke Zhao , Zhen Liu , Luyao Liu , Changyuan Yu , Jingshun Pan , Xuguang Huang . Functionalized Reflective Structure Fiber-Optic Interferometric Sensor for Trace Detection of Lead Ions. Acta Physico-Chimica Sinica, 2024, 40(4): 2304029-0. doi: 10.3866/PKU.WHXB202304029
-
[7]
Jingyi Chen , Fu Liu , Tiejun Zhu , Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111
-
[8]
Wei Peng , Baoying Wen , Huamin Li , Yiru Wang , Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062
-
[9]
Zhaoyue Lü , Zhehao Chen , Yi Ni , Duanbin Luo , Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047
-
[10]
Jiajie Li , Xiaocong Ma , Jufang Zheng , Qiang Wan , Xiaoshun Zhou , Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117
-
[11]
Ruiqin Feng , Ye Fan , Yun Fang , Yongmei Xia . Strategy for Regulating Surface Protrusion of Gold Nanoflowers and Their Surface-Enhanced Raman Scattering. Acta Physico-Chimica Sinica, 2024, 40(4): 2304020-0. doi: 10.3866/PKU.WHXB202304020
-
[12]
Yufan ZHAO , Jinglin YOU , Shixiang WANG , Guopeng LIU , Xiang XIA , Yingfang XIE , Meiqin SHENG , Feiyan XU , Kai TANG , Liming LU . Raman spectroscopic quantitative study of the melt microstructure in binary Li2O-GeO2 functional crystals. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1533-1544. doi: 10.11862/CJIC.20250063
-
[13]
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005
-
[14]
Kexin Dong , Chuqi Shen , Ruyu Yan , Yanping Liu , Chunqiang Zhuang , Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-0. doi: 10.3866/PKU.WHXB202310013
-
[15]
Jijun Sun , Qianlang Wang , Qian Chen , Quanqin Zhao , Shumei Zhai . The Antibiotic Legion’s Manifesto to Human Allies. University Chemistry, 2025, 40(4): 307-321. doi: 10.12461/PKU.DXHX202405206
-
[16]
Yanhui Zhong , Ran Wang , Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017
-
[17]
Kaifu Zhang , Shan Gao , Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045
-
[18]
Qiaoqiao BAI , Anqi ZHOU , Xiaowei LI , Tang LIU , Song LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128
-
[19]
Xingchao Zhao , Xiaoming Li , Ming Liu , Zijin Zhao , Kaixuan Yang , Pengtian Liu , Haolan Zhang , Jintai Li , Xiaoling Ma , Qi Yao , Yanming Sun , Fujun Zhang . Photomultiplication-Type All-Polymer Photodetectors and Their Applications in Photoplethysmography Sensor. Acta Physico-Chimica Sinica, 2025, 41(1): 100007-0. doi: 10.3866/PKU.WHXB202311021
-
[20]
Cun WANG , Shaohan XU , Yuqian ZHANG , Yaoyao ZHANG , Tao GONG , Rong WEN , Yuhang LIAO , Yanrong REN . Terbium complex electrochemiluminescent emitters: Synthesis and application in the detection of epinephrine. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1351-1360. doi: 10.11862/CJIC.20240427
-
[1]
Metrics
- PDF Downloads(1)
- Abstract views(740)
- HTML views(116)