Citation: Li Yanyan, Liu Yingya, Fan Xiao, Cao Yingnan, Wang Jiajia, Lu Jusheng, Qu Lulu, Geng Junfeng, Li Haitao. Progress in Detection Methods of Antibiotic Residues in Drinking Water[J]. Chemistry, ;2016, 79(3): 213-219. shu

Progress in Detection Methods of Antibiotic Residues in Drinking Water

  • Corresponding author: Li Haitao, 
  • Received Date: 10 July 2015
    Available Online: 4 November 2015

    Fund Project:

  • Antibiotics as a type of medicine which kills bacterium or inhibits bacterial growth are widely applied to food, clinical practice, veterinary medicine and agriculture. However, its residue may penetrate surface water and thus portable water source which can not be cleared by standard water treatment method and harmful to human health and will cause disease (e.g. allergy, fever, drug resistance and aplastic anemia). Therefore, study on detection of antibiotic residues in drinking water attracts increasing attention recently. Here the progress in analysis methods (high-performance liquid chromatography, terahertz time-domain spectroscopy, immunoassays and surface-enhanced Raman spectroscopy) of antibiotic residues in drinking water are reviewed, and development in future as well as the problems of the present situation are also commented.
  • 加载中
    1. [1]

      [1] R R Reinert, M van der Linden, I Seegmüller et al. Clin. Microbiol. Infect., 2007, 13(4):363~368.

    2. [2]

      [2] J Woo, E K Li. Infection, 1987, 15(2):129~130.

    3. [3]

      [3] D J Sexton, M J Tenenbaum, W R Wilson et al. Clin. Infecti. Diseas., 1998, 27(6):1470~1474.

    4. [4]

      [4] 金煜.科技致富向导, 2014,(10):5~5. DOI:10.3969/j.issn.1007-1547.2014.10.003.

    5. [5]

      [5] http://health.timedg.com/2014-12/26/content_15042942.htm

    6. [6]

      [6] 顾昀.兽医导刊, 2015, (1):1.

    7. [7]

      [7] http://tech.southcn.com/t/2014-12/26/content_115047952.htm

    8. [8]

      [8] 杜兆林,郑彤,刘丽艳等.持久性有机污染物论坛2011暨第六届持久性有机污染物全国学术研讨会论文集.2011:244~246.

    9. [9]

      [9] 2006 G B. 生活饮用水卫生标准, 2006.

    10. [10]

      [10] K Reddersen, T Heberer, U Dünnbier. Chemosphere, 2002, 49(6):539~544.

    11. [11]

      [11] http://news.southcn.com/china/content/2015-04/16/content_122347839_4.htm

    12. [12]

      [12] 毛跟年, 许牡丹, 黄建文. 环境中有毒有害物质与分析检测. 化学工业出版社环境科学与工程出版中心, 2004.

    13. [13]

      [13] M Seifrtová, L Nováková, C Lino et al. Anal. Chim. Acta, 2009, 649(2):158~179.

    14. [14]

      [14] N T Malintan, M A Mohd. J. Chromatogr. A, 2006, 1127(1):154~160.

    15. [15]

      [15] 洪波, 曾春芳, 高峰等. 湖南农业科学, 2013, 21:024.

    16. [16]

      [16] E Gikas, F N Bazoti, P Fanourgiakis et al. J. Pharma. Biomed. Anal., 2010, 51(4):901~906.

    17. [17]

      [17] S M Esponda, M E T Padrón, Z S Ferrera et al. Anal. Bioanal. Chem., 2009, 394(4):927~935.

    18. [18]

      [18] 谭建华, 唐才明, 余以义等.色谱, 2007, 25(4):546~549.

    19. [19]

      [19] B Kasprzyk-Hordern, R M Dinsdale, A J Guwy. J. Chromatogr. A, 2007, 1161(1):132~145.

    20. [20]

      [20] R Cazorla-Reyes, R Romero-González, A G Frenich et al. J. Pharma. Biomed. Anal., 2014, 89:203~212.

    21. [21]

      [21] 汪一帆, 尉万聪, 周凤娟等.生物化学与生物物理进展, 2010, 37(5):484~489.

    22. [22]

      [22] L Xie, W Gao, J Shu et al. Sci. Rep., 2015, DOI:10.1038/srep08671.

    23. [23]

      [23] 廉飞宇, 杨静, 付麦霞等.中国粮油学报, 2014, 29(8):111~116.

    24. [24]

      [24] 李利龙, 吴磊, 向洋等.光学与光电技术, 2014, 12(001):72~74.

    25. [25]

      [25] J Qin, L Xie, Y Ying. Anal. Chem., 2014, 86(23):11750~11757.

    26. [26]

      [26] M T Meyer, J E Bumgarner, J L Varns et al. Sci. Tot. Environ., 2000, 248(2):181~187.

    27. [27]

      [27] C Zhao, W Liu, H Ling et al. J. Agr. Food Chem., 2007, 55(17):6879~6884.

    28. [28]

      [28] H Font, J Adrian, R Galve et al. J. Agr. Food Chem., 2008, 56(3):736~743.

    29. [29]

      [29] C Cháfer-Pericás,ÁMaquieira, R Puchades et al. Anal. Chim. Acta, 2010, 662(2):177~185.

    30. [30]

      [30] C W Pyun, A M Abd El-Aty, M M M Hashim et al. Biomed. Chromatogr., 2008, 22(3):254~259.

    31. [31]

      [31] N E Virolainen, M G Pikkemaat, J W A Elferink et al. J. Agr. Food Chem., 2008, 56(23):11065~11070.

    32. [32]

      [32] J Lamar, M Petz. Anal. Chim. Acta, 2007, 586(1):296~303.

    33. [33]

      [33] J E Wu, C Chang, W P Ding et al. J. Agr. Food Chem., 2008, 56(18):8261~8267.

    34. [34]

      [34] F Conzuelo, M Gamella, S Campuzano et al. Anal. Chim. Acta, 2012, 737:29~36.

    35. [35]

      [35] F Conzuelo, S Campuzano, M Gamella et al. Biosens. Bioelect., 2013, 50:100~105.

    36. [36]

      [36] F Granados-Chinchilla, J Sánchez, F García et al. J. Agr. Food Chem., 2012, 60(29):7121~7128.

    37. [37]

      [37] P Chandra, H B Noh, M S Won et al. Biosen. Bioelect., 2011, 26(11):4442~4449.

    38. [38]

      [38] Q Wei, Y Zhao, B Du et al. Food Chem., 2012, 134(3):1601~1606.

    39. [39]

      [39] W Lian, J Huang, J Yu et al. Food Control, 2012, 26(2):620~627.

    40. [40]

      [40] W Lian, S Liu, J Yu et al. Biosens. Bioelect., 2012, 38(1):163~169.

    41. [41]

      [41] F Conzuelo, M Gamella, S Campuzano et al. Anal. Chem., 2013, 85(6):3246~3254.

    42. [42]

      [42] W Jin, G Yang, L Wu et al. Food Control, 2011, 22(10):1609~1616.

    43. [43]

      [43] L Yan, C Luo, W Cheng et al. J. Electroanal. Chem., 2012, 687:89~94.

    44. [44]

      [44] E Gustavsson. J. AOAC Int., 2006, 89(3):832~837.

    45. [45]

      [45] F Fernández, D G Pinacho, F Sánchez-Baeza et al. J. Agr. Food Chem., 2011, 59(9):5036~5043.

    46. [46]

      [46] Z Dong, G Huang, S Xu et al. J. Microsc., 2009, 234(3):255~261.

    47. [47]

      [47] J P Ferguson, G A Baxter, J D G McEvoy et al. Analyst, 2002, 127(7):951~956.

    48. [48]

      [48] M Frasconi, R Tel-Vered, M Riskin et al. Anal. Chem., 2010, 82(6):2512~2519.

    49. [49]

      [49] J Ferguson, A Baxter, P Young et al. Anal. Chim. Acta, 2005, 529(1):109~113.

    50. [50]

      [50] H Hu, Z Wang, S Wang et al. J.Alloys Compds., 2011, 509(5):2016~2020.

    51. [51]

      [51] S J Clarke, R E Littleford, W E Smith et al. Analyst, 2005, 130(7):1019~1026.

    52. [52]

      [52] L He, M Lin, H Li et al. J. Raman Spectrosc., 2010, 41(7):739~744.

    53. [53]

      [53] R Li, H Zhang, Q W Chen et al. Analyst, 2011, 136(12):2527~2532.

    54. [54]

      [54] A Koyun, E Ahlatcolu, Y Koca. Biosensors and their principles. A Roadmap of Biomedical Engineers and Milestones, 2012.

    55. [55]

      [55] S Wang, B Xu, Y Zhang et al. Meat Sci., 2009, 82(1):53~58.

    56. [56]

      [56] R Galarini, F Diana, S Moretti et al. Food Control, 2014, 35(1):300~310.

  • 加载中
    1. [1]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    2. [2]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    3. [3]

      Siming Bian Sijie Luo Junjie Ou . Application of van Deemter Equation in Instrumental Analysis Teaching: A New Type of Core-Shell Stationary Phase. University Chemistry, 2025, 40(3): 381-386. doi: 10.12461/PKU.DXHX202406087

    4. [4]

      Yue-Zhou ZhuKun WangShi-Sheng ZhengHong-Jia WangJin-Chao DongJian-Feng Li . Application and Development of Electrochemical Spectroscopy Methods. Acta Physico-Chimica Sinica, 2024, 40(3): 2304040-0. doi: 10.3866/PKU.WHXB202304040

    5. [5]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    6. [6]

      Ke ZhaoZhen LiuLuyao LiuChangyuan YuJingshun PanXuguang Huang . Functionalized Reflective Structure Fiber-Optic Interferometric Sensor for Trace Detection of Lead Ions. Acta Physico-Chimica Sinica, 2024, 40(4): 2304029-0. doi: 10.3866/PKU.WHXB202304029

    7. [7]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    8. [8]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    9. [9]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

    10. [10]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    11. [11]

      Ruiqin FengYe FanYun FangYongmei Xia . Strategy for Regulating Surface Protrusion of Gold Nanoflowers and Their Surface-Enhanced Raman Scattering. Acta Physico-Chimica Sinica, 2024, 40(4): 2304020-0. doi: 10.3866/PKU.WHXB202304020

    12. [12]

      Yufan ZHAOJinglin YOUShixiang WANGGuopeng LIUXiang XIAYingfang XIEMeiqin SHENGFeiyan XUKai TANGLiming LU . Raman spectroscopic quantitative study of the melt microstructure in binary Li2O-GeO2 functional crystals. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1533-1544. doi: 10.11862/CJIC.20250063

    13. [13]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

    14. [14]

      Kexin DongChuqi ShenRuyu YanYanping LiuChunqiang ZhuangShijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-0. doi: 10.3866/PKU.WHXB202310013

    15. [15]

      Jijun Sun Qianlang Wang Qian Chen Quanqin Zhao Shumei Zhai . The Antibiotic Legion’s Manifesto to Human Allies. University Chemistry, 2025, 40(4): 307-321. doi: 10.12461/PKU.DXHX202405206

    16. [16]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    17. [17]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    18. [18]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    19. [19]

      Xingchao ZhaoXiaoming LiMing LiuZijin ZhaoKaixuan YangPengtian LiuHaolan ZhangJintai LiXiaoling MaQi YaoYanming SunFujun Zhang . Photomultiplication-Type All-Polymer Photodetectors and Their Applications in Photoplethysmography Sensor. Acta Physico-Chimica Sinica, 2025, 41(1): 100007-0. doi: 10.3866/PKU.WHXB202311021

    20. [20]

      Cun WANGShaohan XUYuqian ZHANGYaoyao ZHANGTao GONGRong WENYuhang LIAOYanrong REN . Terbium complex electrochemiluminescent emitters: Synthesis and application in the detection of epinephrine. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1351-1360. doi: 10.11862/CJIC.20240427

Metrics
  • PDF Downloads(1)
  • Abstract views(740)
  • HTML views(116)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return